On Convex Functions and the Finite Element Method

Many problems of theoretical and practical interest involve finding a convex or concave function. For instance, optimization problems such as finding the projection on the convex functions in $H^k(\Omega)$, or some problems in economics. In the continuous setting and assuming smoothness, the convexity constraints may be given locally by asking the Hessian matrix to be positive semidefinite, but in making discrete approximations two difficulties arise: the continuous solutions may be not smooth, and an adequate discrete version of the Hessian must be given. In this paper we propose a finite element description of the Hessian, and prove convergence under very general conditions, even when the continuous solution is not smooth, working on any dimension, and requiring a linear number of constraints in the number of nodes. Using semidefinite programming codes, we show concrete examples of approximations to optimization problems.

[1]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[2]  Philippe Choné Étude de quelques problèmes variationnels intervenant en géométrie riemannienne et en économie mathématique , 1999 .

[3]  Pedro Morin,et al.  Approximating optimization problems over convex functions , 2008, Numerische Mathematik.

[4]  B. Borchers A C library for semidefinite programming , 1999 .

[5]  Giuseppe Buttazzo,et al.  Minimum Problems over Sets of Concave Functions and Related Questions , 1995 .

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  Mark A. Peletier,et al.  Newton's problem of the body of minimal resistance in the class of convex developable functions , 2000 .

[8]  Mark A. Peletier,et al.  EXTREMAL POINTS OF A FUNCTIONAL ON THE SET OF CONVEX FUNCTIONS , 1999 .

[9]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[10]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[11]  A. Hoffman,et al.  The variation of the spectrum of a normal matrix , 1953 .

[12]  Guillaume Carlier,et al.  Regularity of solutions for some variational problems subject to a convexity constraint , 2001 .

[13]  Édouard Oudet,et al.  Minimizing within Convex Bodies Using a Convex Hull Method , 2005, SIAM J. Optim..

[14]  M. Bagirov Optimization Methods and Software , 2005 .

[15]  Bertrand Maury,et al.  H1-projection into the set of convex functions : a saddle-point formulation , 2001 .

[16]  Paolo Guasoni,et al.  Shape optimization problems over classes of convex domains. , 1997 .

[17]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[18]  J. Rochet,et al.  Ironing, Sweeping, and Multidimensional Screening , 1998 .

[19]  Bertrand Maury,et al.  A numerical approach to variational problems subject to convexity constraint , 2001, Numerische Mathematik.

[20]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[21]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[22]  Kazuo Murota,et al.  Relationship of M-/L-convex functions with discrete convex functions by Miller and Favati-Tardella , 2001, Discret. Appl. Math..

[23]  Alejandro M. Manelli,et al.  Multidimensional Mechanism Design: Revenue Maximization and the Multiple-Good Monopoly , 2004, J. Econ. Theory.

[24]  J. Fu,et al.  An extension of Alexandrov's theorem on second derivatives of convex functions , 2009, 0908.0278.