Error estimates for a class of partial functional differential equation with small dissipation

This article deals with a class of partial functional differential equation with a small dissipating parameter on a rectangular domain. Classical numerical methods for solving this type of problems reveal disappointing behavior or are tremendously expensive in computer memory and processor time. This arises because the precision of an approximate solution depends inversely on perturbation parameter values and, thus, it deteriorates as a parameter decreases. Therefore, it is of particular interest to develop numerical methods whose error estimates would be independent of the perturbation parameter contaminating the solution. In order to overcome the said difficulty we derive robust parameter uniform error estimates for a class of partial functional differential equations. The analysis presented in this paper uses a suitable decomposition of the error into smooth and a singular component combined with the appropriate barrier functions and comparison principle.

[1]  M. K. Kadalbajoo,et al.  ϵ-Uniform fitted mesh method for singularly perturbed differential-difference equations: Mixed type of shifts with layer behavior , 2004, Int. J. Comput. Math..

[2]  A. A. Samarskii,et al.  Computational heat transfer , 1995 .

[3]  J. Steele,et al.  Spatial Heterogeneity and Population Stability , 1974, Nature.

[4]  Manju Sharma,et al.  Convergence Analysis of Weighted Difference Approximations on Piecewise Uniform Grids to a Class of Singularly Perturbed Functional Differential Equations , 2012, J. Optim. Theory Appl..

[5]  Kapil K. Sharma,et al.  A solution of the discrepancy occurs due to using the fitted mesh approach rather than to the fitted operator for solving singularly perturbed differential equations , 2006, Appl. Math. Comput..

[6]  Song Wang,et al.  The finite element method with weighted basis functions for singularly perturbed convection--diffusion problems , 2004 .

[7]  Peter D. Lax Stability of Difference Schemes , 2013 .

[8]  John J. H. Miller,et al.  A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation , 1996 .

[9]  Gunar Matthies,et al.  A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems , 1998 .

[10]  W. Eckhaus Asymptotic Analysis of Singular Perturbations , 1979 .

[11]  A. Tikhonov,et al.  Equations of Mathematical Physics , 1964 .

[12]  G. I. SHISHKIN,et al.  Grid approximation of singularly perturbed boundary value problems with convective terms , 1990 .

[13]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[14]  Aditya Kaushik Nonstandard perturbation approximation and travelling wave solutions of nonlinear reaction diffusion equations , 2008 .

[15]  Aditya Kaushik Singular perturbation analysis of bistable differential equation arising in the nerve pulse propagation , 2008 .

[16]  Tongjun Sun,et al.  Parallel Galerkin domain decomposition procedures based on the streamline diffusion method for convection-diffusion problems , 2011, J. Comput. Appl. Math..

[17]  A. Bellen,et al.  Numerical methods for delay differential equations , 2003 .

[18]  Vimal Singh,et al.  Perturbation methods , 1991 .

[19]  Mohamed El-Gamel,et al.  A Wavelet-Galerkin method for a singularly perturbed convection-dominated diffusion equation , 2006, Appl. Math. Comput..

[20]  M. K. Kadalbajoo,et al.  Numerical analysis of singularly perturbed delay differential equations with layer behavior , 2004, Appl. Math. Comput..

[21]  Iterative domain decomposition algorithms for the solution of singularly perturbed parabolic problems , 1996 .

[22]  S. Chandra Sekhara Rao,et al.  Optimal B-spline collocation method for self-adjoint singularly perturbed boundary value problems , 2007, Appl. Math. Comput..

[23]  John Mallet-Paret,et al.  Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation , 1986 .

[24]  R. Kellogg,et al.  Analysis of some difference approximations for a singular perturbation problem without turning points , 1978 .

[25]  Mohan K. Kadalbajoo,et al.  Fitted mesh B-spline collocation method for solving self-adjoint singularly perturbed boundary value problems , 2005, Appl. Math. Comput..

[26]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[27]  M. K. Kadalbajoo,et al.  Numerical analysis of boundary-value problems for singularly perturbed differential-difference equations: small shifts of mixed type with rapid oscillations , 2004 .

[28]  Shui-Nee Chow,et al.  Singularly Perturbed Delay-Differential Equations , 1983 .

[29]  Donald R. Smith The Multivariable Method in Singular Perturbation Analysis , 1975 .

[30]  W. Eckhaus Matched Asymptotic Expansions and Singular Perturbations , 1973 .

[31]  V. Thomée Stability Theory for Partial Difference Operators , 1969 .

[32]  Martin Stynes,et al.  A uniformly accurate finite-element method for a singularly perturbed one-dimensional reaction-diffusion , 1986 .

[33]  R. B. Kellogg,et al.  Differentiability properties of solutions of the equation -ε 2 δ u + ru = f ( x,y ) in a square , 1990 .

[34]  Aditya Kaushik,et al.  Numerical analysis of a mathematical model for propagation of an electrical pulse in a neuron , 2008 .