MODELY CIRKULACE A PŘENOSU KREVNÍCH PLYNŮ PRO LÉKAŘSKOU VÝUKU

[1]  R. Hester,et al.  Physiologic Mechanisms of Water and Electrolyte Disturbances After Transsphenoidal Pituitary Surgery. , 2017, World neurosurgery.

[2]  Joost Lumens,et al.  Creating your own virtual patient with CircAdapt Simulator. , 2014, European heart journal.

[3]  Peter Fritzson,et al.  Modelica - A Unified Object-Oriented Language for System Modelling and Simulation , 1998, ECOOP.

[4]  Robert L. Hester,et al.  HumMod: A Modeling Environment for the Simulation of Integrative Human Physiology , 2011, Front. Physio..

[5]  Michael Tiller,et al.  Introduction to Physical Modeling with Modelica , 2001 .

[6]  Jiří Kofránek,et al.  Schola Ludus in Modern Garment: Use of Web Multimedia Simulation in Biomedical Teaching , 2009 .

[7]  Hilding Elmqvist,et al.  MODELICA — THE NEW OBJECT-ORIENTED MODELING LANGUAGE , 1998 .

[8]  Peter Fritzson,et al.  Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach , 2014 .

[9]  Jiri Kofranek,et al.  The Atlas of Physiology and Pathophysiology: Web-based multimedia enabled interactive simulations , 2011, Comput. Methods Programs Biomed..

[10]  Martin Otter,et al.  Modelica-a language for physical system modeling, visualization and interaction , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[11]  W. B. Murray,et al.  Preventing and Treating Hypoxia: Using a Physiology Simulator to Demonstrate the Value of Pre-Oxygenation and the Futility of Hyperventilation , 2015, International journal of medical sciences.

[12]  Jirí Kofránek,et al.  Physiomodel - an integrative physiology in Modelica , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[13]  Hilding Elmqvist,et al.  An Introduction to the Physical Modeling Language Modelica , 1997 .

[14]  R. Hester,et al.  Mechanisms of blood pressure salt sensitivity: new insights from mathematical modeling. , 2017, American journal of physiology. Regulatory, integrative and comparative physiology.

[15]  Jian Chen,et al.  HumMod Browser: An Exploratory Visualization Tool for Model Validation of Whole-Body Physiology Simulation , 2013, EuroVis.

[16]  Tomás Kulhánek,et al.  Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: Object-oriented and acausal approach , 2014, Comput. Biol. Medicine.

[17]  Jian Chen,et al.  Hummod browser: An exploratory visualization tool for the analysis of whole-body physiology simulation data , 2013, 2013 IEEE Symposium on Biological Data Visualization (BioVis).

[18]  T. G. Coleman,et al.  Systems biology and integrative physiological modelling , 2011, The Journal of physiology.

[19]  T. G. Coleman,et al.  Circulation: overall regulation. , 1972, Annual review of physiology.

[20]  Peter A. Fritzson,et al.  Introduction to Modeling and Simulation of Technical and Physical Systems with Modelica , 2011 .

[21]  David H. Laidlaw,et al.  HumMod explorer: a multi-scale time-varying human modeling navigator , 2011, SA '11.

[22]  Jiri Kofranek,et al.  Integrative physiology in Modelica , 2017, Modelica.

[23]  T G Coleman,et al.  HUMAN. A comprehensive physiological model. , 1983, The Physiologist.

[24]  Jiří Kofránek,et al.  Lumped models of the cardiovascular system of various complexity , 2017 .

[25]  R. Hester,et al.  Validation of an integrative mathematical model of dehydration and rehydration in virtual humans , 2016, Physiological reports.

[26]  T. G. Coleman,et al.  Quantitative Circulatory Physiology: An integrative mathematical model of human physiology for medical education , 2007, Advances in physiology education.