Numerical simulation of the solution of a stochastic differential equation driven by a Lévy process
暂无分享,去创建一个
[1] J. Mémin,et al. Convergence en loi des suites d'intégrales stochastiques sur l'espace $$\mathbb{D}$$ 1 de Skorokhod , 1989 .
[2] L. Slominski. Stability of strong solutions of stochastic differential equations , 1989 .
[3] J. Mémin,et al. Condition UT et stabilité en loi des solutions d’équations différentielles stochastiques , 1991 .
[4] Philip Protter,et al. Wong-Zakai Corrections, Random Evolutions, and Simulation Schemes for SDE's , 1991 .
[5] D. Talay,et al. The law of the Euler scheme for stochastic differential equations , 1996 .
[6] P. Protter,et al. Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .
[7] D. Talay,et al. Expansion of the global error for numerical schemes solving stochastic differential equations , 1990 .
[8] Denis Talay,et al. The law of the Euler scheme for stochastic differential equations , 1996, Monte Carlo Methods Appl..
[9] P. Protter,et al. Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .
[10] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[11] M. Émery,et al. Seminaire de Probabilites XXXI , 1997 .
[12] Jean Jacod,et al. On continuous conditional Gaussian martingales and stable convergence in law , 1997 .
[13] Philip Protter,et al. The Euler scheme for Lévy driven stochastic differential equations , 1997 .