Anomaly detection for high precision foundries

Microshrinkages are known as probably the most difficult defects to avoid in high-precision foundry. This failure renders the casting invalid, with the subsequent cost increment. Modelling the foundry process as an expert knowledge cloud allows machine learning algorithms to foresee the value of a certain variable, in this case, the probability that a microshrin-kage appears within a casting. However, this approach needs to label every instance for generating the model that can classify the castings. In this paper, we present a new approach for detecting faulty castings inspired on anomaly detection methods. This approach represents correct castings as feature vectors of information extracted from the foundry process. Thereby, a casting is classified as correct or not correct by measuring its deviation to the representation of normality (i.e., correct castings). We show that this method achieves good accuracy rates to reduce the cost and testing time in foundry production.

[1]  Takehisa Yairi,et al.  An approach to spacecraft anomaly detection problem using kernel feature space , 2005, KDD '05.

[2]  A. K. Bhaduri,et al.  Application of Bayesian Neural Network for modeling and prediction of ferrite number in austenitic stainless steel welds , 2001 .

[3]  M Perzyk,et al.  Detection of causes of casting defects assisted by artificial neural networks , 2003 .

[4]  P. Larrañaga,et al.  Análisis del proceso de solidificación en fundiciones grafíticas esferoidales , 2006 .

[5]  Jim Austin,et al.  Novelty detection for strain-gauge degradation using maximally correlated components , 2002, ESANN.

[6]  Pei Zhang,et al.  Optimizing Casting Parameters of Ingot Based on Neural Network and Genetic Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.

[7]  J. P. Oria,et al.  Ultrasonic sensing classification of foundry pieces applying neural networks , 1998, AMC'98 - Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No.98TH8354).

[8]  Jin Wang,et al.  Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes , 2007, IEEE Transactions on Semiconductor Manufacturing.

[9]  Yoseba K. Penya,et al.  Mechanical properties prediction in high-precision foundry production , 2009, 2009 7th IEEE International Conference on Industrial Informatics.

[10]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[11]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[12]  R. Gonzaga-Cinco,et al.  Dependencia de las propiedades mecánicas y de la composición química en la fundición de grafito esferoidal , 2006 .

[13]  Jignesh M. Patel,et al.  Estimating the selectivity of tf-idf based cosine similarity predicates , 2007, SGMD.

[14]  J. Sertucha,et al.  Influencia de las condiciones de moldeo y las características de los moldes sobre la formación de defectos de contracción en piezas de fundición esferoidal , 2007 .

[15]  J. Kent Information gain and a general measure of correlation , 1983 .

[16]  Steven R Schmid Kalpakjian,et al.  Manufacturing Engineering and Technology , 1991 .

[17]  A. Zabala,et al.  Advanced fault prediction in high-precision foundry production , 2008, 2008 6th IEEE International Conference on Industrial Informatics.

[18]  Yoseba K. Penya,et al.  Optimising Machine-Learning-Based Fault Prediction in Foundry Production , 2009, IWANN.

[19]  R. Gonzaga-Cinco,et al.  Mecanical properties dependency on chemical composition of spheroidal graphite cast iron , 2006 .

[20]  Yoseba K. Penya,et al.  Machine-learning-based mechanical properties prediction in foundry production , 2009, 2009 ICCAS-SICE.

[21]  Yoseba K. Penya,et al.  Towards noise and error reduction on foundry data gathering processes , 2010, 2010 IEEE International Symposium on Industrial Electronics.

[22]  Igor Santos,et al.  Enhancing fault prediction on automatic foundry processes , 2010, 2010 World Automation Congress.

[23]  Igor Santos,et al.  Overcoming data gathering errors for the prediction of mechanical properties on high precision foundries , 2010, 2010 World Automation Congress.

[24]  H. K. D. H. Bhadeshia,et al.  Neural Networks in Materials Science , 1999 .

[25]  Yoseba K. Penya,et al.  Enhanced Foundry Production Control , 2010, DEXA.