Anomaly detection for high precision foundries
暂无分享,去创建一个
[1] Takehisa Yairi,et al. An approach to spacecraft anomaly detection problem using kernel feature space , 2005, KDD '05.
[2] A. K. Bhaduri,et al. Application of Bayesian Neural Network for modeling and prediction of ferrite number in austenitic stainless steel welds , 2001 .
[3] M Perzyk,et al. Detection of causes of casting defects assisted by artificial neural networks , 2003 .
[4] P. Larrañaga,et al. Análisis del proceso de solidificación en fundiciones grafíticas esferoidales , 2006 .
[5] Jim Austin,et al. Novelty detection for strain-gauge degradation using maximally correlated components , 2002, ESANN.
[6] Pei Zhang,et al. Optimizing Casting Parameters of Ingot Based on Neural Network and Genetic Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.
[7] J. P. Oria,et al. Ultrasonic sensing classification of foundry pieces applying neural networks , 1998, AMC'98 - Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No.98TH8354).
[8] Jin Wang,et al. Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes , 2007, IEEE Transactions on Semiconductor Manufacturing.
[9] Yoseba K. Penya,et al. Mechanical properties prediction in high-precision foundry production , 2009, 2009 7th IEEE International Conference on Industrial Informatics.
[10] Ron Kohavi,et al. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.
[11] Jay H. Lee,et al. Model predictive control: past, present and future , 1999 .
[12] R. Gonzaga-Cinco,et al. Dependencia de las propiedades mecánicas y de la composición química en la fundición de grafito esferoidal , 2006 .
[13] Jignesh M. Patel,et al. Estimating the selectivity of tf-idf based cosine similarity predicates , 2007, SGMD.
[14] J. Sertucha,et al. Influencia de las condiciones de moldeo y las características de los moldes sobre la formación de defectos de contracción en piezas de fundición esferoidal , 2007 .
[15] J. Kent. Information gain and a general measure of correlation , 1983 .
[16] Steven R Schmid Kalpakjian,et al. Manufacturing Engineering and Technology , 1991 .
[17] A. Zabala,et al. Advanced fault prediction in high-precision foundry production , 2008, 2008 6th IEEE International Conference on Industrial Informatics.
[18] Yoseba K. Penya,et al. Optimising Machine-Learning-Based Fault Prediction in Foundry Production , 2009, IWANN.
[19] R. Gonzaga-Cinco,et al. Mecanical properties dependency on chemical composition of spheroidal graphite cast iron , 2006 .
[20] Yoseba K. Penya,et al. Machine-learning-based mechanical properties prediction in foundry production , 2009, 2009 ICCAS-SICE.
[21] Yoseba K. Penya,et al. Towards noise and error reduction on foundry data gathering processes , 2010, 2010 IEEE International Symposium on Industrial Electronics.
[22] Igor Santos,et al. Enhancing fault prediction on automatic foundry processes , 2010, 2010 World Automation Congress.
[23] Igor Santos,et al. Overcoming data gathering errors for the prediction of mechanical properties on high precision foundries , 2010, 2010 World Automation Congress.
[24] H. K. D. H. Bhadeshia,et al. Neural Networks in Materials Science , 1999 .
[25] Yoseba K. Penya,et al. Enhanced Foundry Production Control , 2010, DEXA.