Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures

We investigate the chiral properties of near fields around plasmonic nanostructures and their relation to the electromagnetic chirality C. By combining chiral metal nanoparticles with achiral dye molecules and measuring the circular polarization dependence of the enhanced photoluminescence, we find a correlation between the dissymmetry of the luminescence enhancement and the calculated values of C. These effects are strong (∼10 −1 ), despite the weak circular dichroism of the particles (∼10 −5 ). We further show that C represents the chiral selectivity of the near-field coupling between an emitter and a nanoantenna.

[1]  Daniel M. Lipkin,et al.  Existence of a New Conservation Law in Electromagnetic Theory , 1964 .

[2]  Glenn P. Goodrich,et al.  Plasmonic enhancement of molecular fluorescence. , 2007, Nano letters.

[3]  D. Patterson,et al.  Enantiomer-specific detection of chiral molecules via microwave spectroscopy , 2013, Nature.

[4]  Matt M. Coles,et al.  Measures of chirality and angular momentum in the electromagnetic field. , 2012, Optics letters.

[5]  M. Wegener,et al.  Twisted split-ring-resonator photonic metamaterial with huge optical activity. , 2010, Optics letters.

[6]  T. Verbiest,et al.  Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook , 2013, Advanced materials.

[7]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[8]  Yiqiao Tang,et al.  Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light , 2011, Science.

[9]  D. E. Chang,et al.  Strong coupling of single emitters to surface plasmons , 2006, quant-ph/0603221.

[10]  N. Zheludev,et al.  Multifold enhancement of quantum dot luminescence in plasmonic metamaterials. , 2010, Physical review letters.

[11]  E. Hendry,et al.  Chiral Electromagnetic Fields Generated by Arrays of Nanoslits , 2012, Nano letters.

[12]  Yiqiao Tang,et al.  Optical chirality and its interaction with matter. , 2010, Physical review letters.

[13]  Stephen M. Barnett,et al.  Optical helicity, optical spin and related quantities in electromagnetic theory , 2012 .

[14]  M. Wegener,et al.  Toy model for plasmonic metamaterial resonances coupled to two-level system gain. , 2008, Optics express.

[15]  Bruce A. Garett Molecular Light Scattering and Optical Activity, 2nd ed , 2005 .

[16]  A. Polman,et al.  Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model , 2007 .

[17]  Laurence A. Nafie,et al.  Vibrational Optical Activity: Principles and Applications , 2011 .

[18]  Bernhard Lamprecht,et al.  Fluorescence imaging of surface plasmon fields , 2002 .

[19]  Stephen M. Barnett,et al.  Duplex symmetry and its relation to the conservation of optical helicity , 2012 .

[20]  Franco Nori,et al.  Characterizing optical chirality , 2010, 1012.4176.

[21]  Konstantins Jefimovs,et al.  Giant optical activity in quasi-two-dimensional planar nanostructures. , 2005, Physical review letters.

[22]  H. Atwater,et al.  Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. , 2006, Nano letters (Print).

[23]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.