Formation of Ultracold Molecules by Merging Optical Tweezers

We demonstrate the formation of a single RbCs molecule during the merging of two optical tweezers, one containing a single Rb atom and the other a single Cs atom. Both atoms are initially predominantly in the motional ground states of their respective tweezers. We confirm molecule formation and establish the state of the molecule formed by measuring its binding energy. We find that the probability of molecule formation can be controlled by tuning the confinement of the traps during the merging process, in good agreement with coupled-channel calculations. We show that the conversion efficiency from atoms to molecules using this technique is comparable to magnetoassociation.

[1]  D. Huse,et al.  Probing site-resolved correlations in a spin system of ultracold molecules , 2022, Nature.

[2]  W. Ketterle,et al.  Dipolar spin-exchange and entanglement between molecules in an optical tweezer array , 2022, Science.

[3]  L. Cheuk,et al.  On-demand entanglement of molecules in a reconfigurable optical tweezer array , 2022, Science.

[4]  M. Landini,et al.  Observation of Confinement-Induced Resonances in a 3D Lattice. , 2022, Physical review letters.

[5]  S. Cornish,et al.  Preparation of 87Rb and 133Cs in the motional ground state of a single optical tweezer , 2022, New Journal of Physics.

[6]  J. Hutson,et al.  Interaction Potential for NaCs for Ultracold Scattering and Spectroscopy , 2022, The journal of physical chemistry. A.

[7]  K. Ni,et al.  Quantum science with optical tweezer arrays of ultracold atoms and molecules , 2021, Nature Physics.

[8]  S. Cornish,et al.  Preparation of one 87Rb and one 133Cs atom in a single optical tweezer , 2021, New Journal of Physics.

[9]  K. Ni,et al.  Assembly of a Rovibrational Ground State Molecule in an Optical Tweezer. , 2021, Physical review letters.

[10]  M. Zhan,et al.  Coherently forming a single molecule in an optical trap , 2020, Science.

[11]  J. Hood,et al.  Forming a Single Molecule by Magnetoassociation in an Optical Tweezer. , 2020, Physical review letters.

[12]  Jonathan A. Jones,et al.  Robust entangling gate for polar molecules using magnetic and microwave fields , 2019, Physical Review A.

[13]  Victor V. Albert,et al.  Robust Encoding of a Qubit in a Molecule , 2019, Physical Review X.

[14]  D. Jaksch,et al.  Ultracold polar molecules as qudits , 2019, New Journal of Physics.

[15]  S. Cornish,et al.  Production of optically trapped 87 RbCs Feshbach molecules , 2020 .

[16]  K. Ni,et al.  Molecular Assembly of Ground-State Cooled Single Atoms , 2019, Physical Review X.

[17]  John M. Doyle,et al.  An optical tweezer array of ultracold molecules , 2019, Science.

[18]  Jeremy M. Hutson,et al.  bound and field: Programs for calculating bound states of interacting pairs of atoms and molecules , 2018, Comput. Phys. Commun..

[19]  S. Cornish,et al.  Two-photon photoassociation spectroscopy of CsYb: Ground-state interaction potential and interspecies scattering lengths , 2018, Physical Review A.

[20]  K. Ni,et al.  Dipolar exchange quantum logic gate with polar molecules , 2018, Chemical science.

[21]  Michael S. Woody,et al.  Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. , 2018, Optics express.

[22]  Jun Ye,et al.  Cold molecules: Progress in quantum engineering of chemistry and quantum matter , 2017, Science.

[23]  H. Nägerl,et al.  Quantum Engineering of a Low-Entropy Gas of Heteronuclear Bosonic Molecules in an Optical Lattice. , 2016, Physical review letters.

[24]  Nikolay V. Vitanov,et al.  Stimulated Raman adiabatic passage in physics, chemistry, and beyond , 2016, 1605.00224.

[25]  S. Cornish,et al.  Production of ultracold RbCs in the absolute ground state: complete characterisation of the STIRAP transfer , 2017 .

[26]  Jun Ye,et al.  Doublon dynamics and polar molecule production in an optical lattice , 2015, Nature Communications.

[27]  S. Sala,et al.  Theory of inelastic confinement-induced resonances due to the coupling of center-of-mass and relative motion , 2015, 1509.05799.

[28]  D. Stamper-Kurn,et al.  A quantum dipolar spin liquid , 2015, 1510.06403.

[29]  M. Foss-Feig,et al.  Entangling two transportable neutral atoms via local spin exchange , 2015, Nature.

[30]  I. Novikova,et al.  Quantum Magnetism with Ultracold Molecules , 2014, 1406.4758.

[31]  S. Cornish,et al.  Creation of ultracold ^{87}Rb^{133}Cs molecules in the rovibrational ground state. , 2014, Physical review letters.

[32]  M. Foss-Feig,et al.  Two-particle quantum interference in tunnel-coupled optical tweezers , 2014, Science.

[33]  H. Nägerl,et al.  Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. , 2014, Physical review letters.

[34]  S. Kokkelmans,et al.  Feshbach resonances in ultracold gases , 2014, 1401.2945.

[35]  P. Zoller,et al.  From classical to quantum glasses with ultracold polar molecules. , 2013, Physical review letters.

[36]  S. Jochim,et al.  Coherent molecule formation in anharmonic potentials near confinement-induced resonances. , 2013, Physical review letters.

[37]  P. Zoller,et al.  Condensed matter theory of dipolar quantum gases. , 2012, Chemical reviews.

[38]  R. Grimm,et al.  Towards the production of ultracold ground-state RbCs molecules: Feshbach resonances, weakly bound states, and the coupled-channel model , 2012, 1201.1438.

[39]  S. Jochim,et al.  Fermionization of two distinguishable fermions. , 2011, Physical review letters.

[40]  M. Lukin,et al.  Tunable superfluidity and quantum magnetism with ultracold polar molecules. , 2011, Physical review letters.

[41]  H. Nägerl,et al.  Molecular spectroscopy for ground-state transfer of ultracold RbCs molecules. , 2011, Physical chemistry chemical physics : PCCP.

[42]  G. Lamporesi,et al.  Scattering in mixed dimensions with ultracold gases. , 2010, Physical review letters.

[43]  J. Danzl,et al.  Realization of an Excited, Strongly Correlated Quantum Gas Phase , 2009, Science.

[44]  L. Duan,et al.  Anharmonicity-induced resonances for ultracold atoms and their detection , 2009, 0907.2906.

[45]  Z. Idziaszek,et al.  Controlled collisions of two ultracold atoms in separate harmonic traps , 2009, 0904.4203.

[46]  C. Ospelkaus,et al.  Heteronuclear molecules in an optical lattice: Theory and experiment , 2007, cond-mat/0703322.

[47]  K. Góral,et al.  Production of cold molecules via magnetically tunable Feshbach resonances , 2006, cond-mat/0601420.

[48]  M. Lukin,et al.  Quantum magnetism with multicomponent dipolar molecules in an optical lattice. , 2006, Physical review letters.

[49]  I. Deutsch,et al.  Trap-induced resonances in controlled collisions of cesium atoms (10 pages) , 2005, physics/0509211.

[50]  T. Esslinger,et al.  Confinement induced molecules in a 1D Fermi gas. , 2005, Physical review letters.

[51]  I. Deutsch,et al.  Quantum state control via trap-induced shape resonance in ultracold atomic collisions. , 2003, Physical review letters.

[52]  M. Olshanii,et al.  Atom-Atom Scattering under Cylindrical Harmonic Confinement: Numerical and Analytic Studies of the Confinement Induced Resonance. , 2002, Physical review letters.

[53]  D. DeMille Quantum computation with trapped polar molecules. , 2001, Physical review letters.

[54]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[55]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[56]  M. Olshanii Atomic Scattering in the Presence of an External Confinement and a Gas of Impenetrable Bosons , 1998, cond-mat/9804130.

[57]  B. Englert,et al.  Two Cold Atoms in a Harmonic Trap , 1998 .

[58]  D. Manolopoulos,et al.  Symplectic integrators for the multichannel Schrödinger equation , 1995 .

[59]  D. Manolopoulos,et al.  A stable linear reference potential algorithm for solution of the quantum close‐coupled equations in molecular scattering theory , 1987 .