Robo-AO Kepler Asteroseismic Survey. I. Adaptive Optics Imaging of 99 Asteroseismic Kepler Dwarfs and Subgiants

We used the Robo-AO laser adaptive optics system to image 99 main sequence and subgiant stars that have Kepler-detected asteroseismic signals. Robo-AO allows us to resolve blended secondary sources at separations as close as 0.15" that may contribute to the measured Kepler light curves and affect asteroseismic analysis and interpretation. We report 8 new secondary sources within 4.0" of these Kepler asteroseismic stars. We used Subaru and Keck adaptive optics to measure differential infrared photometry for these candidate companion systems. Two of the secondary sources are likely foreground objects and at least 6 of the secondaries are background sources; however we cannot exclude the possibility that three of the objects may be physically associated. We measured a range of i'-band amplitude dilutions for the candidate companion systems from 0.43% to 15.4%. We find that the measured amplitude dilutions are insufficient to explain the previously identified excess scatter in the relationship between asteroseismic oscillation amplitude and the frequency of maximum power.

[1]  P. Quirion,et al.  VERIFICATION OF THE KEPLER INPUT CATALOG FROM ASTEROSEISMOLOGY OF SOLAR-TYPE STARS , 2011, 1109.0869.

[2]  J. Christensen-Dalsgaard,et al.  Oscillation frequencies for 35 Kepler solar-type planet-hosting stars using Bayesian techniques and machine learning , 2015, 1511.02105.

[3]  R. Gilliland,et al.  LIMITS ON SURFACE GRAVITIES OF KEPLER PLANET-CANDIDATE HOST STARS FROM NON-DETECTION OF SOLAR-LIKE OSCILLATIONS , 2014, 1401.6324.

[4]  Christoph Baranec,et al.  ROBO-AO KEPLER PLANETARY CANDIDATE SURVEY. II. ADAPTIVE OPTICS IMAGING OF 969 KEPLER EXOPLANET CANDIDATE HOST STARS , 2016, 1604.08604.

[5]  M. P. Di Mauro,et al.  PROPERTIES OF 42 SOLAR-TYPE KEPLER TARGETS FROM THE ASTEROSEISMIC MODELING PORTAL , 2014, 1402.3614.

[6]  S. Pires,et al.  Impact on asteroseismic analyses of regular gaps in Kepler data , 2014, 1405.5374.

[7]  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field P , 2002, astro-ph/0211470.

[8]  D. Stello,et al.  ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER , 2013, 1302.0858.

[9]  Conny Aerts,et al.  Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars , 2011, Nature.

[10]  Pravin Chordia,et al.  HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS , 2014, 1407.8179.

[11]  G. Gilmore,et al.  Planets, Stars and Stellar Systems Vol. 5 , 2013 .

[12]  L. Hillenbrand,et al.  The Stellar Populations of Praesepe and Coma Berenices , 2007, 0708.2719.

[13]  N. Shaviv,et al.  Asteroseismic effects in close binary stars , 2013, 1307.3709.

[14]  C. Baltay,et al.  Atmospheric extinction properties above Mauna Kea from the Nearby SuperNova Factory spectro-photometric data set , 2012, 1210.2619.

[15]  David R. Ciardi,et al.  ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST , 2012, 1205.5535.

[16]  J. De Ridder,et al.  Characterization of red giant stars in the public Kepler data , 2011, 1103.0141.

[17]  Christoph Baranec,et al.  The Robo-AO automated intelligent queue system , 2014, Astronomical Telescopes and Instrumentation.

[18]  J. De Ridder,et al.  TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA , 2011, 1109.3460.

[19]  Sujit Punnadi,et al.  A SURVEY OF THE HIGH ORDER MULTIPLICITY OF NEARBY SOLAR-TYPE BINARY STARS WITH Robo-AO , 2014, 1411.0682.

[20]  J. De Ridder,et al.  SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER , 2010, 1001.0229.

[21]  D. A. Caldwell,et al.  INITIAL CHARACTERISTICS OF KEPLER SHORT CADENCE DATA , 2009, 1001.0142.

[22]  Christoph Baranec,et al.  PROBABILITY OF THE PHYSICAL ASSOCIATION OF 104 BLENDED COMPANIONS TO KEPLER OBJECTS OF INTEREST USING VISIBLE AND NEAR-INFRARED ADAPTIVE OPTICS PHOTOMETRY , 2016, 1609.09512.

[23]  Pravin Chordia,et al.  Bringing the Visible Universe into Focus with Robo-AO , 2013, Journal of visualized experiments : JoVE.

[24]  H. M. Antia,et al.  Oscillation mode linewidths and heights of 23 main-sequence stars observed by Kepler , 2014, 1403.7046.

[25]  J. Ridder,et al.  A Bayesian approach to scaling relations for amplitudes of solar-like oscillations in Kepler stars , 2012, 1212.1156.

[26]  C. Baranec,et al.  AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS , 2015, 1501.06227.

[27]  M. Ireland,et al.  THE IMPACT OF STELLAR MULTIPLICITY ON PLANETARY SYSTEMS. I. THE RUINOUS INFLUENCE OF CLOSE BINARY COMPANIONS , 2016, 1604.05744.

[28]  Howard Isaacson,et al.  ORBITAL ARCHITECTURES OF PLANET-HOSTING BINARIES. I. FORMING FIVE SMALL PLANETS IN THE TRUNCATED DISK OF KEPLER-444A , 2015, 1512.03428.

[29]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[30]  Tim Morton,et al.  The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate , 2016, Astronomical Telescopes + Instrumentation.

[31]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[32]  Christophe Bonnaud,et al.  SNIFS: a wideband integral field spectrograph with microlens arrays , 2003, SPIE Optical Systems Design.

[33]  Howard Isaacson,et al.  Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run , 2016, 1609.04128.

[34]  J. De Ridder,et al.  Characterization of the power excess of solar-like oscillations in red giants with Kepler , 2011, 1110.0980.

[35]  Christoph Baranec,et al.  Robo-AO Kitt Peak: status of the system and deployment of a sub-electron readnoise IR camera to detect low-mass companions , 2016, Astronomical Telescopes + Instrumentation.

[36]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[37]  Howard Isaacson,et al.  KEPLER-21b: A 1.6 REarth PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 , 2011, 1112.2165.

[38]  Gordon A. H. Walker,et al.  The MOST Asteroseismology Mission: Ultraprecise Photometry from Space , 2003 .

[39]  M. Auvergne,et al.  The CoRoT satellite in flight : description and performance , 2009, 0901.2206.

[40]  Eric Gaidos,et al.  SPECTRO-THERMOMETRY OF M DWARFS AND THEIR CANDIDATE PLANETS: TOO HOT, TOO COOL, OR JUST RIGHT? , 2013, 1311.0003.

[41]  T. Appourchaux,et al.  ASTEROSEISMIC FUNDAMENTAL PROPERTIES OF SOLAR-TYPE STARS OBSERVED BY THE NASA KEPLER MISSION , 2013, 1310.4001.

[42]  Marco Bonati,et al.  The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.

[43]  D. Ciardi,et al.  INFLUENCE OF STELLAR MULTIPLICITY ON PLANET FORMATION. II. PLANETS ARE LESS COMMON IN MULTIPLE-STAR SYSTEMS WITH SEPARATIONS SMALLER THAN 1500 AU , 2014, 1407.3344.

[44]  John Asher Johnson,et al.  ROBOTIC LASER ADAPTIVE OPTICS IMAGING OF 715 KEPLER EXOPLANET CANDIDATES USING ROBO-AO , 2013, 1312.4958.

[45]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[46]  M. Martic,et al.  THE ASTEROSEISMIC POTENTIAL OF KEPLER: FIRST RESULTS FOR SOLAR-TYPE STARS , 2010, 1001.0506.

[47]  D. Lai Dynamical Tides in Rotating Binary Stars , 1997, astro-ph/9704132.

[48]  J. Schou,et al.  SEISMIC EVIDENCE FOR A RAPIDLY ROTATING CORE IN A LOWER-GIANT-BRANCH STAR OBSERVED WITH KEPLER , 2012, 1206.3312.

[49]  F. Grundahl,et al.  AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER , 2011, 1107.0490.

[50]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[51]  R. Bacon,et al.  Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.