An Artificial CO2‐Driven Ionic Gate Inspired by Olfactory Sensory Neurons in Mosquitoes

A novel CO2 -driven ionic gate, mimicking the function of olfactory sensory neurons of mosquitoes, is successfully developed by functionalizing the walls of the nanochannels using 1-(4-amino-phenyl)-2,2,2-trifluoro-ethanone. This artificial nanochannel can switch between the ON-state and OFF-state in the presence and absence of CO2 , with an ultrahigh gating ratio of up to 1250, and has potential applications in CO2 -related sensing, gating, and nanofluidic systems.

[1]  Minmin Luo,et al.  Detection of Near-Atmospheric Concentrations of CO2 by an Olfactory Subsystem in the Mouse , 2007, Science.

[2]  Leslie B. Vosshall,et al.  Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction , 2004, Neuron.

[3]  Daniel C Leslie,et al.  Stability of Surface-Immobilized Lubricant Interfaces under Flow , 2015, Chemistry of Materials.

[4]  W. Takken,et al.  Odor-mediated behavior of Afrotropical malaria mosquitoes. , 1999, Annual review of entomology.

[5]  Anandasankar Ray,et al.  Modification of CO2 avoidance behaviour in Drosophila by inhibitory odorants , 2009, Nature.

[6]  E. Bakker,et al.  Direct optical carbon dioxide sensing based on a polymeric film doped with a selective molecular tweezer-type ionophore. , 2012, Analytical chemistry.

[7]  Zeng-Qiang Wu,et al.  Solution‐pH‐Modulated Rectification of Ionic Current in Highly Ordered Nanochannel Arrays Patterned with Chemical Functional Groups at Designed Positions , 2013 .

[8]  L. A. Baker,et al.  Effect of crown ether on ion currents through synthetic membranes containing a single conically shaped nanopore. , 2005, The journal of physical chemistry. B.

[9]  Olle Eriksson,et al.  Vanishing Magnetic Interaction in Ferromagnetic Thin Films , 2005 .

[10]  E. Bakker,et al.  Non-Severinghaus potentiometric dissolved CO2 sensor with improved characteristics. , 2013, Analytical chemistry.

[11]  Qian Liu,et al.  A Bioinspired Switchable and Tunable Carbonate-Activated Nanofluidic Diode Based on a Single Nanochannel. , 2015, Angewandte Chemie.

[12]  Xu Hou,et al.  A biomimetic asymmetric responsive single nanochannel. , 2010, Journal of the American Chemical Society.

[13]  Xu Hou,et al.  Current rectification in temperature-responsive single nanopores. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  Devens Gust,et al.  Control of nanopore wetting by a photochromic spiropyran: a light-controlled valve and electrical switch. , 2006, Nano letters.

[15]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[16]  Ben L Feringa,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005, Science.

[17]  Jin Zhai,et al.  Olfactory Sensory Neuron‐Mimetic CO2 Activated Nanofluidic Diode with Fast Response Rate , 2015, Advanced materials.

[18]  Sean Conlan,et al.  Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter , 1999, Nature.

[19]  Z. Siwy,et al.  Nanopores: Graphene opens up to DNA. , 2010, Nature nanotechnology.

[20]  Olivier Sudre,et al.  Control of ionic transport through gated single conical nanopores , 2009, Analytical and bioanalytical chemistry.

[21]  Xu Hou,et al.  Learning from nature: building bio-inspired smart nanochannels. , 2009, ACS nano.

[22]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[23]  Wen-Jie Lan,et al.  Pressure-dependent ion current rectification in conical-shaped glass nanopores. , 2011, Journal of the American Chemical Society.

[24]  J. Wu,et al.  Proton diffusion across membranes of vesicles of poly(styrene-b-acrylic acid) diblock copolymers. , 2006, Journal of the American Chemical Society.

[25]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[26]  Martin Steinhart,et al.  Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. , 2008, Nature nanotechnology.

[27]  Zuzanna Siwy,et al.  DNA-nanotube artificial ion channels. , 2004, Journal of the American Chemical Society.

[28]  M. Gillies.,et al.  The Role of Carbon Dioxide in Host-Finding by Mosquitoes (Diptera: Culicidae): A Review , 1980 .

[29]  Nan Li,et al.  Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes , 2011, Nature.

[30]  W. Takken,et al.  Innate Preference for Host-Odor Blends Modulates Degree of Anthropophagy of Anopheles gambiae sensu lato (Diptera: Culicidae) , 2001, Journal of medical entomology.

[31]  Eric Bakker,et al.  Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. , 2014, Nature chemistry.

[32]  Reimar Spohr,et al.  Diode-like single-ion track membrane prepared by electro-stopping , 2001 .

[33]  Z. Siwy,et al.  Asymmetric diffusion through synthetic nanopores. , 2005, Physical review letters.

[34]  Xiaofeng Lu,et al.  Simultaneous stochastic sensing of divalent metal ions , 2000, Nature Biotechnology.

[35]  W. Takken,et al.  Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae , 2007, Current Biology.

[36]  Reinhard Neumann,et al.  Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. , 2009, Small.

[37]  C. Potter,et al.  Stop the Biting: Targeting a Mosquito’s Sense of Smell , 2014, Cell.

[38]  Fan Zhang,et al.  Chiral recognition of Arg based on label-free PET nanochannel. , 2015, Chemical communications.

[39]  Ryan J. White,et al.  Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. , 2010, Chemical communications.

[40]  Xu Hou,et al.  Smart Gating Multi‐Scale Pore/Channel‐Based Membranes , 2016, Advanced materials.

[41]  Xu Hou,et al.  Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification. , 2012, Angewandte Chemie.

[42]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[43]  Shizhi Qian,et al.  Programmable ionic conductance in a pH-regulated gated nanochannel. , 2014, Physical chemistry chemical physics : PCCP.

[44]  W. Takken,et al.  Olfactory regulation of mosquito-host interactions. , 2004, Insect biochemistry and molecular biology.

[45]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[46]  R. Neumann,et al.  Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements , 2007 .

[47]  S. Frings Chemoelectrical signal transduction in olfactory sensory neurons of air-breathing vertebrates , 2001, Cellular and Molecular Life Sciences CMLS.

[48]  Lei Jiang,et al.  Malachite Green Derivative–Functionalized Single Nanochannel: Light‐and‐pH Dual‐Driven Ionic Gating , 2012, Advanced materials.

[49]  S. Firestein How the olfactory system makes sense of scents , 2001, Nature.

[50]  P. Takmakov,et al.  Water confinement in hydrophobic nanopores. Pressure-induced wetting and drying. , 2010, ACS nano.

[51]  J. Joanny,et al.  Fast DNA translocation through a solid-state nanopore. , 2004, Nano letters.

[52]  Minghong Ma,et al.  Encoding Olfactory Signals via Multiple Chemosensory Systems , 2007, Critical reviews in biochemistry and molecular biology.

[53]  Xu Hou,et al.  A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. , 2009, Journal of the American Chemical Society.

[54]  H. White,et al.  The nanopore electrode. , 2004, Analytical chemistry.

[55]  R. Eisenberg,et al.  Nanoprecipitation-assisted ion current oscillations. , 2008, Nature nanotechnology.

[56]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.