Explaining Trained Neural Networks with Semantic Web Technologies: First Steps

The ever increasing prevalence of publicly available structured data on the World Wide Web enables new applications in a variety of domains. In this paper, we provide a conceptual approach that leverages such data in order to explain the input-output behavior of trained artificial neural networks. We apply existing Semantic Web technologies in order to provide an experimental proof of concept.

[1]  Ryszard S. Michalski,et al.  Inductive inference of VL decision rules , 1977, SGAR.

[2]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[3]  Jérôme Euzenat,et al.  Ontology Matching, Second Edition , 2013 .

[4]  Bolei Zhou,et al.  Semantic Understanding of Scenes Through the ADE20K Dataset , 2016, International Journal of Computer Vision.

[5]  Jens Lehmann,et al.  DBpedia - A large-scale, multilingual knowledge base extracted from Wikipedia , 2015, Semantic Web.

[6]  Sebastian Rudolph,et al.  Foundations of Semantic Web Technologies , 2009 .

[7]  Jens Lehmann,et al.  Extracting reduced logic programs from artificial neural networks , 2010, Applied Intelligence.

[8]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[9]  Heng Ji,et al.  Knowledge Base Population: Successful Approaches and Challenges , 2011, ACL.

[10]  Jens Lehmann,et al.  DL-Learner - A framework for inductive learning on the Semantic Web , 2016, J. Web Semant..

[11]  Peter F. Patel-Schneider,et al.  OWL 2 Web Ontology Language Primer (Second Edition) , 2012 .

[12]  Siegfried Handschuh,et al.  Semantic annotation for knowledge management: Requirements and a survey of the state of the art , 2006, J. Web Semant..

[13]  Luc De Raedt,et al.  Neural-Symbolic Learning and Reasoning: Contributions and Challenges , 2015, AAAI Spring Symposia.

[14]  Jens Lehmann,et al.  Perspectives on Ontology Learning , 2014, Studies on the Semantic Web.

[15]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[16]  Markus Krötzsch,et al.  Wikidata , 2014, Commun. ACM.

[17]  Pascal Hitzler,et al.  Propositional Rule Extraction from Neural Networks under Background Knowledge , 2017, NeSy.

[18]  Dan Brickley,et al.  Schema.org: Evolution of Structured Data on the Web , 2015, ACM Queue.

[19]  Jens Lehmann,et al.  Concept learning in description logics using refinement operators , 2009, Machine Learning.

[20]  Artur S. d'Avila Garcez,et al.  The Connectionist Inductive Learning and Logic Programming System , 1999, Applied Intelligence.

[21]  Bolei Zhou,et al.  Scene Parsing through ADE20K Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..