Influence of pores arrangement on stability of photonic structures during sintering

[1]  J. Rojek,et al.  Multiscale modeling of pressure-assisted sintering , 2019, Computational Materials Science.

[2]  A. Stein,et al.  Preparation and Characterization of Macroporous a-Alumina , 2003 .

[3]  Y. Sakka,et al.  Fabrication of Macroporous Alumina with Tailored Porosity , 2003 .

[4]  C. López,et al.  Growth of tin oxide in opal , 2000 .

[5]  Robert M. McMeeking,et al.  A network model for initial stage sintering , 1998 .

[6]  Hongwei Song,et al.  Three-dimensional ordered ZnO-CuO inverse opals toward low concentration acetone detection for exhaled breath sensing , 2015 .

[7]  H. Riedel,et al.  Simulations of the influence of rearrangement during sintering , 2007 .

[8]  J. J. do Rosário,et al.  Vertical convective coassembly of refractory YSZ inverse opals from crystalline nanoparticles. , 2013, ACS applied materials & interfaces.

[9]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[10]  O. Sherby,et al.  Deformation of fine-grained alumina by grain boundary sliding accommodated by slip , 2003 .

[11]  J. J. do Rosário,et al.  Advancing the fabrication of YSZ-inverse photonic glasses for broadband omnidirectional reflector films , 2019, Journal of the European Ceramic Society.

[12]  A. Stein,et al.  Maintaining the structure of templated porous materials for reactive and high-temperature applications. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[13]  M. Eich,et al.  Enhanced structural and phase stability of titania inverse opals , 2015 .

[14]  Stefan Heinrich,et al.  Discrete element simulation of metal ceramic composite materials with varying metal content , 2016 .

[15]  O. Guillon,et al.  Stress-induced anisotropy of sintering alumina: Discrete element modelling and experiments , 2007 .

[16]  F. Adenot,et al.  Simulation of sintering using a Non Smooth Discrete Element Method. Application to the study of rearrangement , 2014 .

[17]  J. J. do Rosário,et al.  Self‐Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals , 2015 .

[18]  J. J. do Rosário,et al.  Determination of the packing fraction in photonic glass using synchrotron radiation nanotomography , 2016, Journal of synchrotron radiation.

[19]  R. Klie,et al.  Microstructure Study of Carbon Nanocages Consisting of Graphene Oxide Grafted with Single Gold Nanoparticles by Application of HAADF Contrast Imaging , 2018, Microscopy and Microanalysis.

[20]  R. Blick,et al.  Low‐Temperature Mullite Formation in Ternary Oxide Coatings Deposited by ALD for High‐Temperature Applications , 2017 .

[21]  A. Diaz,et al.  Photonic materials for high-temperature applications: Synthesis and characterization by X-ray ptychographic tomography , 2018, Applied Materials Today.

[22]  O. Guillon,et al.  Cracking and shape deformation of cylindrical cavities during constrained sintering , 2017 .

[23]  K. Behdinan,et al.  Discrete element model for ZrB2-SiC ceramic composite sintering , 2019 .

[24]  R. Bordia,et al.  The effect of a substrate on the sintering of constrained films , 2009 .

[25]  V. Schmidt,et al.  Bonded-particle extraction and stochastic modeling of internal agglomerate structures , 2016 .

[26]  C. Hafner,et al.  High-Temperature Photonic Structures. Thermal Barrier Coatings, Infrared Sources and Other Applications , 2008 .

[27]  S. Heinrich,et al.  Sintering Simulation of Periodic Macro Porous Alumina , 2015 .

[28]  Leilei Yin,et al.  X-ray computed tomography of holographically fabricated three-dimensional photonic crystals. , 2012, Advanced materials.

[29]  C. David,et al.  Nanotomography of Inverse Photonic Crystals Using Zernike Phase Contrast , 2018, Microscopy and Microanalysis.

[30]  R. Bordia,et al.  Simulation of the toughness of partially sintered ceramics with realistic microstructures , 2012 .

[31]  Nicolas Vogel,et al.  Advances in colloidal assembly: the design of structure and hierarchy in two and three dimensions. , 2015, Chemical reviews.

[32]  V. Schmidt,et al.  DEM Analysis of Breakage Behavior of Bicomponent Agglomerates , 2019, Particles in Contact.

[33]  Jerzy Rojek,et al.  Viscoelastic discrete element model of powder sintering , 2013 .

[34]  Joanna Aizenberg,et al.  Assembly of large-area, highly ordered, crack-free inverse opal films , 2010, Proceedings of the National Academy of Sciences.

[35]  Christophe L. Martin,et al.  Anisotropic sintering behavior of freeze-cast ceramics by optical dilatometry and discrete-element simulations , 2018, Acta Materialia.

[36]  J. Bray,et al.  Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme , 2004 .

[37]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[38]  Y. X. Yeng,et al.  Enabling high-temperature nanophotonics for energy applications , 2012, Proceedings of the National Academy of Sciences.

[39]  Manfred Eich,et al.  Thermal radiation transmission and reflection properties of ceramic 3D photonic crystals , 2012 .

[40]  K. Watari,et al.  Macroporous ZrO2 ceramics prepared from colloidally stable nanoparticles building blocks and organic templates. , 2005, Journal of colloid and interface science.

[41]  J. J. do Rosário,et al.  Facile deposition of YSZ-inverse photonic glass films. , 2014, ACS applied materials & interfaces.

[42]  G. Schneider,et al.  Highly porous α-Al 2 O 3 ceramics obtained by sintering atomic layer deposited inverse opals , 2017 .

[43]  R. Blick,et al.  Effects of processing parameters on 3D structural ordering and optical properties of inverse opal photonic crystals produced by atomic layer deposition , 2019, International Journal of Ceramic Engineering & Science.

[44]  A. Kinloch Adhesion and adhesives , 1987 .