Resultants and Chow forms via exterior syzygies

Let W be a vector space of dimension n+ 1 over a field K. The Chow divisor of a k-dimensional variety X in P = P(W ) is the hypersurface, in the Grassmannian Gk+1 of planes of codimension k+1 in P, whose points (over the algebraic closure of K) are the planes that meet X . The Chow form of X is the defining equation of the Chow divisor. For example, the resultant of k+ 1 forms of degree e in k + 1 variables is the Chow form of P embedded by the e-th Veronese mapping in P with n = ( k+e k ) − 1. More generally, the Chow divisor of a k-cycle ∑ i ni[Vi] on projective space is defined to be ∑ i niDi, where Di is the Chow divisor of Vi. The Chow divisor of a sheaf F with k-dimensional support is the Chow divisor of the associated k-cycle of F . In this paper we will give a new expression for the Chow divisor and apply it to give explicit formulas in many new cases. Starting with a sheaf F on P, we use exterior algebra methods to define a canonical and effectively computable Chow complex of F on each Grassmannian of planes in P. If F has k-dimensional support, we show that the Chow form of F is the determinant of the Chow complex of F on the Grassmannian of planes of codimension k + 1. The Beilinson monad of F [Beilinson 1978] is the Chow complex of F on the Grassmannian of 0-planes (that is, on P itself.) In particular, we are able to give explicit determinantal and Pfaffian formulas for resultants in some cases where no polynomial formulas were known. For example, the Horrocks-Mumford bundle gives rise to polynomial formulas for the resultant of five homogeneous forms of degrees 4, 6 or 8 in five variables. The easiest of our new formulas to write down is for the resultant of 3 quadratic forms in three variables, the Chow form of the Veronese surface in P. Using the tangent bundle of P, conclude that it can be written in “Bezout form” (described below) as the Pfaffian of the matrix  0 [245] [345] [135] [045] [035] [145] [235]

[1]  J. Brennan,et al.  Maximally generated Cohen-Macaulay modules. , 1987 .

[2]  A. A. Tikhomirov The main component of the moduli space of mathematical instanton vector bundles on P3 , 1997 .

[3]  C. D'Andrea,et al.  Explicit formulas for the multivariate resultant , 2000, math/0007036.

[4]  S. Donkin Rational Representations of Algebraic Groups: Tensor Products and Filtrations , 1985 .

[5]  B. Ulrich,et al.  Linear maximal Cohen-Macaulay modules over strict complete intersections☆ , 1991 .

[6]  T. Willmore Algebraic Geometry , 1973, Nature.

[7]  D. Eisenbud,et al.  Cohen-Macaulay modules on quadrics , 1987 .

[8]  G. Kempf Linear systems on homogeneous spaces , 1976 .

[9]  David Eisenbud,et al.  Sheaf Cohomology and Free Resolutions over Exterior Algebras , 2003 .

[10]  David Eisenbud,et al.  Linear Free Resolutions and Minimal Multiplicity , 1984 .

[11]  B. Ulrich Gorenstein rings and modules with high numbers of generators , 1984 .

[12]  Victor Vinnikov,et al.  Complete description of determinantal representations of smooth irreducible curves , 1989 .

[13]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[14]  W. Fulton Young Tableaux: With Applications to Representation Theory and Geometry , 1996 .

[15]  David Eisenbud,et al.  LINEAR SECTIONS OF DETERMINANTAL VARIETIES , 1988 .

[16]  D. Mumford,et al.  A rank 2 vector bundle on P4 with 15,000 symmetries , 1973 .

[17]  G. Horrocks Vector Bundles on the Punctured Spectrum of a Local Ring , 1964 .

[18]  M. Kline Mathematical Thought from Ancient to Modern Times , 1972 .

[19]  A. Beilinson Coherent sheaves on Pn and problems of linear algebra , 1978 .

[20]  C. D'Andrea Macaulay style formulas for sparse resultants , 2001 .

[21]  C. Okonek,et al.  Vector bundles on complex projective spaces , 1980 .

[22]  M. Stark,et al.  THE THEORY OF ELIMINATION , 1964 .

[23]  Lucien Szpiro,et al.  Liaison des variétés algébriques. I , 1974 .

[24]  J. Herzog,et al.  On Ulrich-Modules over Hypersurface Rings , 1989 .

[25]  W. Haboush A short proof of the Kempf vanishing theorem , 1980 .

[26]  M. Lejeune-jalabert,et al.  Calcul différentiel et classes caractéristiques en géométrie algébrique , 1989 .

[27]  Arnaud Beauville,et al.  Determinantal hypersurfaces , 1999 .

[28]  Bernard Mourrain,et al.  Resultant over the residual of a complete intersection , 2001 .

[29]  J. Jantzen Representations of algebraic groups , 1987 .

[30]  D. Mumford,et al.  The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div". , 1976 .

[31]  J. J. Sylvester,et al.  XXIII. A method of determining by mere inspection the derivatives from two equations of any degree , 1840 .

[32]  Amit Khetan Determinantal formula for the chow form of a toric surface , 2002, ISSAC '02.

[33]  R. Hartshorne,et al.  Cohomology of a general instanton bundle , 1982 .

[34]  R. G. Swan,et al.  K-Theory of quadric hypersurfaces , 1985 .