Visualization of Surfactants on Nanostructured Palladium Clusters by a Combination of STM and High-Resolution TEM

Scanning tunneling microscopy (STM) and high-resolution transmission electron microscopy (TEM) have been used to determine the dimensions of a series of palladium clusters stabilized by tetraalkylammonium salts. Electrochemically prepared colloids were used in which the average diameter of the inner metal core was varied between 2 and 4 nanometers, and the size of the ammonium ions was adjusted in the series +N(n-C4H9)4 < +N(n-C8H17)4 < +N(n-C18H37)4. The difference between the mean diameter determined by STM and that measured by TEM allows the determination of the thickness of the protective surfactant layer. On the basis of these studies, a model of the geometric properties of ammonium-stabilized palladium clusters has been proposed. Suggestions for the mechanism of the STM imaging process are also made.

[1]  Manfred T. Reetz,et al.  Size-Selective Synthesis of Nanostructured Transition Metal Clusters , 1994 .

[2]  L. Lewis Chemical catalysis by colloids and clusters , 1993 .

[3]  H. Bönnemann,et al.  Formation of Colloidal Transition Metals in Organic Phases and Their Application in Catalysis , 1991 .

[4]  J. Malm,et al.  Pt309Phen 36*O30 ± 10, a Four‐Shell Platinum Cluster , 1989 .

[5]  Y. Sasson,et al.  Reversible ion-pair extraction in a biphasic system. application in transition metal-catalyzed isomerization of allylic compounds , 1981 .

[6]  H. Weller Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules , 1993 .

[7]  P. Stenius,et al.  Monodispersed colloidal metal particles from non-aqueous solutions: Catalytic behaviour for the hydrogenation of but-1-ene of platinum particles in solution , 1986 .

[8]  H. Bönnemann,et al.  Erzeugung von kolloiden Übergangsmetallen in organischer Phase und ihre Anwendung in der Katalyse , 1991 .

[9]  K. Klabunde,et al.  Unsupported small metal particles: preparation, reactivity, and characterization , 1982 .

[10]  N. Satoh,et al.  Metal Colloids Produced by Means of Gas Evaporation Technique. V. Colloidal Dispersion of Au Fine Particles to Hexane, Poor Dispersion Medium for Metal Sol , 1989 .

[11]  J. S. Bradley,et al.  Surface chemistry on colloidal metals: a high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension , 1991 .

[12]  Jane Frommer,et al.  Scanning Tunneling Microscopy and Atomic Force Microscopy in Organic Chemistry , 1992 .

[13]  K. Esumi,et al.  The preparation of organo colloidal precious metal particles. , 1988 .

[14]  M. Graetzel,et al.  Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water , 1979 .

[15]  A. Wokaun,et al.  Surface enhanced Raman spectroscopy (SERS) of surfactants adsorbed to colloidal particles , 1988 .

[16]  K. Besocke,et al.  An easily operable scanning tunneling microscope , 1987 .

[17]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .

[18]  H. Weller Kolloidale Halbleiter‐Q‐Teilchen: Chemie im Übergangsbereich zwischen Festkörper und Molekül , 1993 .

[19]  N. Toshima,et al.  Colloidal Dispersions of Platinum and Palladium Clusters Embedded in the Micelles.Preparation and Application to the Catalysis for Hydrogenation of Olefins , 1992 .

[20]  J. Frommer Rastertunnel‐ und Kraftmikroskopie in der Organischen Chemie , 1992 .

[21]  I. Moiseev,et al.  Giant palladium clusters as catalysts of oxidative reactions of olefins and alcohols , 1989 .

[22]  J. Malm,et al.  Pt309Phen 36*O30 + 10, ein vierschaliger Platincluster , 1989 .

[23]  R. Smokers,et al.  Scanning tunneling microscopy observations of metallic clusters Pd561 and Au55 and the implications of their use as a well defined tip , 1991 .

[24]  J. Gerritsen,et al.  Direct imaging of Pd561(phen)38±2On and Au55(PPh3)12Cl6 clusters using scanning tunneling microscopy , 1990 .