Artificial neural networks for estimation of temporal rate coefficient of equilibrium bar volume

Present study consists the growth of a bar profile caused by cross-shore sediment transport. This is especially on growth of bar volume (V) toward equilibrium bar volume (Veq). Three analysis methods being a power and linear regression analysis (PRA and LRA) and an Artificial Neural Network (ANN) analysis were performed to determine empirical temporal rate coefficient (�). Forty-two experimental data were used for training set and the rest of the experimental data were used for testing set in the ANN analysis. As the results of analyses, the smallest average relative and root mean square error (RMSE) computed for the ANN methods are 7.578% and 0.029, respectively. It has been obtained that the ANN analysis, which is used for

[1]  Nicholas C. Kraus,et al.  Equilibrium beach profiles under breaking and non-breaking waves , 1999 .

[2]  Dong-Sheng Jeng,et al.  Application of artificial neural networks in tide-forecasting , 2002 .

[3]  Vladimir M. Krasnopolsky,et al.  Neural network approximations for nonlinear interactions in wind wave spectra: direct mapping for wind seas in deep water , 2005 .

[4]  O. Makarynskyy,et al.  Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia , 2004 .

[5]  Makarand Deo,et al.  Neural network–genetic programming for sediment transport , 2007 .

[6]  Vijay K. Agarwal,et al.  RBF network for spatial mapping of wave heights , 2005 .

[7]  Talat Sukru Ozsahin,et al.  Prediction of contact lengths between an elastic layer and two elastic circular punches with neural networks , 2004 .

[8]  Subba Rao,et al.  Hindcasting of storm waves using neural networks , 2005 .

[9]  R. Dean,et al.  Effect of Varying Sediment Size on Equilibrium Beach Profiles , 1991 .

[10]  P. Bruun Coast Erosion and the Development of Beach Profiles , 1954 .

[11]  Ladislaus Rybach,et al.  Geothermal energy: sustainability and the environment , 2003 .

[12]  Murat İhsan Kömürcü,et al.  Determination of bar parameters caused by cross-shore sediment movement , 2007 .

[13]  B. G. Ruessink,et al.  Nearshore bar crest location quantified from time-averaged X-band radar images , 2002 .

[14]  K. Günaydın,et al.  Characteristics of coastal erosion geometry under regular and irregular waves , 2003 .

[15]  Nedim Tutkun,et al.  Estimation of the beach bar parameters using the genetic algorithms , 2008, Appl. Math. Comput..

[16]  Tl Lee Neural network prediction of a storm surge , 2006 .

[17]  John W. Lund,et al.  Direct application of geothermal energy : 2005 worldwide review , 2005 .

[18]  Ji-Ho Song,et al.  Neural network applications in determining the fatigue crack opening load , 1998 .

[19]  S. Liang,et al.  Prediction models for tidal level including strong meteorologic effects using a neural network , 2008 .

[20]  ARIF HEPBASLI,et al.  Current Status of Geothermal Energy Applications in Turkey , 2003 .

[21]  Talat Sukru Ozsahin,et al.  Neural network model for resilient modulus of emulsified asphalt mixtures , 2008 .

[22]  K. Günaydın The estimation of monthly mean significant wave heights by using artificial neural network and regression methods , 2008 .

[23]  Mohammad Javad Yazdanpanah,et al.  Wave hindcasting by coupling numerical model and artificial neural networks , 2008 .

[24]  A. Demirbas Turkey's Geothermal Energy Potential , 2002 .

[25]  Daniel J. Leggett,et al.  Beach‐Profile Measurement, Theory and Analysis: Practical Guidance and Applied Case Studies , 2000 .

[26]  Kemal Giinaydint,et al.  Investigation of Offshore Bar Geometry Under Regular and Irregular Waves , 2005 .

[27]  Marco Wiering,et al.  Recurrent neural network modeling of nearshore sandbar behavior , 2007, Neural Networks.

[28]  Elcin Kentel,et al.  Renewable energy potential as an alternative to fossil fuels in Turkey , 1999 .

[29]  E. Barbier Nature and technology of geothermal energy: A review , 1997 .

[30]  Elif Sertel,et al.  Estimating Daily Mean Sea Level Heights Using Artificial Neural Networks , 2008 .

[31]  Tai-Wen Hsu Geometric characteristics of storm-beach profiles caused by inclined waves , 1998 .

[32]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1993 .

[33]  Tsung-Lin Lee Prediction of Storm Surge and Surge Deviation Using a Neural Network , 2008 .

[34]  H. Acar A Review of Geothermal Energy in Turkey , 2003 .

[35]  I. B. Fridleifsson,et al.  Status of geothermal energy amongst the world's energy sources , 2003 .

[36]  Oleg Makarynskyy,et al.  A Combined Harmonic Analysis–Artificial Neural Network Methodology for Tidal Predictions , 2007 .

[37]  Kamil Kaygusuz,et al.  Geothermal energy in Turkey: the sustainable future , 2004 .

[38]  Nicholas C. Kraus,et al.  Development of a regional neural network for coastal water level predictions , 2003 .

[39]  Robert G. Dean,et al.  Equilibrium Beach Profiles: Characteristics and Applications , 1991 .

[40]  I. B. Fridleifsson,et al.  Geothermal energy for the benefit of the people , 2001 .

[41]  N. X. Tinh,et al.  MODELLING OF COASTAL OVERWASH , 2006 .

[42]  Tsong-Lin Lee Back-propagation neural network for long-term tidal predictions , 2004 .

[43]  Halldór Ármannsson,et al.  Environmental aspects of geothermal energy utilization , 2003 .

[44]  Leyla Ozgener,et al.  Development of geothermal energy utilization in Turkey: a review , 2004 .

[45]  Tevfik Kaya,et al.  Geothermal Applications in Turkey , 2003 .

[46]  S Mandal ‘ Temporal significant wave height estimation from wind speed by perceptron Kalman filtering , 2007 .

[47]  M. C. Deo,et al.  Estimation of wave spectral shapes using ANN , 2005, Adv. Eng. Softw..

[48]  Li-Ching Lin,et al.  Multi-point tidal prediction using artificial neural network with tide-generating forces , 2006 .

[49]  Arif Hepbasli,et al.  Geothermal energy utilization in Turkey , 2001 .