Issues in the analysis of oligonucleotide tiling microarrays for transcript mapping.

Traditional microarrays use probes complementary to known genes to quantitate the differential gene expression between two or more conditions. Genomic tiling microarray experiments differ in that probes that span a genomic region at regular intervals are used to detect the presence or absence of transcription. This difference means the same sets of biases and the methods for addressing them are unlikely to be relevant to both types of experiment. We introduce the informatics challenges arising in the analysis of tiling microarray experiments as open problems to the scientific community and present initial approaches for the analysis of this nascent technology.

[1]  Kenneth H Buetow,et al.  Detecting false expression signals in high-density oligonucleotide arrays by an in silico approach. , 2005, Genomics.

[2]  P. Farnham,et al.  Genomic Approaches That Aid in the Identification of Transcription Factor Target Genes , 2004, Experimental biology and medicine.

[3]  Magnus Rattray,et al.  Making sense of microarray data distributions , 2002, Bioinform..

[4]  Thomas E. Royce,et al.  Distribution of NF-κB-binding sites across human chromosome 22 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Patrick G Buckley,et al.  Genomic microarrays in the spotlight. , 2004, Trends in genetics : TIG.

[6]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[7]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[8]  Franco Cerrina,et al.  Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. , 2002, Genome research.

[9]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[10]  Mark Gerstein,et al.  Distribution of NF-kappaB-binding sites across human chromosome 22. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Kolker,et al.  Transcriptome analysis of Escherichia coli using high-density oligonucleotide probe arrays. , 2002, Nucleic acids research.

[12]  Vladimir Svetnik,et al.  A comprehensive transcript index of the human genome generated using microarrays and computational approaches , 2004, Genome Biology.

[13]  M. Gerstein,et al.  Relationship between gene co-expression and probe localization on microarray slides , 2003, BMC Genomics.

[14]  R. Young,et al.  Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays , 2004, Nature Genetics.

[15]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[16]  Michael Snyder,et al.  ChIP-chip: a genomic approach for identifying transcription factor binding sites. , 2002, Methods in enzymology.

[17]  E. Schadt,et al.  Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. , 2005, Trends in genetics : TIG.

[18]  Joseph M. Dale,et al.  Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome , 2003, Science.

[19]  J. Ecker,et al.  Applications of DNA tiling arrays for whole-genome analysis. , 2005, Genomics.

[20]  R. Dickey Identification and correction of copper deficiency , 1968 .

[21]  T. Richmond,et al.  Light-directed 5'-->3' synthesis of complex oligonucleotide microarrays. , 2003, Nucleic acids research.

[22]  Wotao Yin,et al.  Background correction for cDNA microarray images using the TV+L1 model , 2005, Bioinform..

[23]  K. Aldape,et al.  A model of molecular interactions on short oligonucleotide microarrays , 2003, Nature Biotechnology.

[24]  Zhijin Wu,et al.  Preprocessing of oligonucleotide array data , 2004, Nature Biotechnology.

[25]  Mark Gerstein,et al.  CREB Binds to Multiple Loci on Human Chromosome 22 , 2004 .

[26]  S. P. Fodor,et al.  Large-Scale Transcriptional Activity in Chromosomes 21 and 22 , 2002, Science.

[27]  Thomas E. Royce,et al.  Global Identification of Human Transcribed Sequences with Genome Tiling Arrays , 2004, Science.

[28]  Mark Gerstein,et al.  Identification and correction of spurious spatial correlations in microarray data. , 2003, BioTechniques.

[29]  S. Cawley,et al.  Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. , 2004, Genome research.

[30]  David Edwards,et al.  Non-linear Normalization and Background Correction in One-channel CDNA Microarray Studies , 2003, Bioinform..

[31]  G. Phillips,et al.  Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[33]  J. Rinn,et al.  The transcriptional activity of human Chromosome 22. , 2003, Genes & development.

[34]  A Chakravarti,et al.  High-throughput variation detection and genotyping using microarrays. , 2001, Genome research.

[35]  Scott A. Rifkin,et al.  A Gene Expression Map for the Euchromatic Genome of Drosophila melanogaster , 2004, Science.

[36]  D. Cavalieri,et al.  Fundamentals of cDNA microarray data analysis. , 2003, Trends in genetics : TIG.