Expressiveness of Concept Expressions in First-Order Description Logics

We introduce a method for characterizing the expressive power of concept expressions in first-order description logics. The method is essentially model-theoretic in nature in that it gives preservation results uniquely identifying a wide range of description logics as fragments of first-order logic. The languages studied in the paper all belong to the well-known @[email protected][email protected]? and %plane1D;49C;@? hierarchies.

[1]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[2]  Richard M. Karp,et al.  Complexity of Computation , 1974 .

[3]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[4]  Maarten de Rijke,et al.  Simulating Without Negation , 1997, J. Log. Comput..

[5]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[6]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[7]  Kees Doets,et al.  Basic model theory , 1996, Studies in logic, language and information.

[8]  Marcelo P Fiore,et al.  Topology via Logic , 1999 .

[9]  Werner Nutt,et al.  The Complexity of Concept Languages , 1997, KR.

[10]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[11]  Dan Suciu,et al.  A query language and optimization techniques for unstructured data , 1996, SIGMOD '96.

[12]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[13]  Wiebe van der Hoek,et al.  First steps in modal logic , 1997 .

[14]  David Toman,et al.  First-Order Queries over Temporal Databases Inexpressible in Temporal Logic , 1996, EDBT.

[15]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[16]  M. de Rijke,et al.  A Note on Graded Modal Logic , 1996, Stud Logica.

[17]  Alex Borgiday On the Relative Expressiveness of Description Logics and Predicate Logics , 1996 .

[18]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[19]  Francesco M. Donini,et al.  Reasoning in description logics , 1997 .

[20]  Maurizio Lenzerini,et al.  Datalog and Description Logics: Expressive Power , 1997, APPIA-GULP-PRODE.

[21]  M. de Rijke,et al.  Bisimulations for Temporal Logic , 1997, J. Log. Lang. Inf..

[22]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[23]  Dov M. Gabbay,et al.  EXPRESSIVE FUNCTIONAL COMPLETENESS IN TENSE LOGIC , 1981 .

[24]  Edith Hemaspaandra,et al.  A Downward Collapse within the Polynomial Hierarchy , 1999, SIAM J. Comput..

[25]  Maurizio Lenzerini,et al.  A Uniform Framework for Concept Definitions in Description Logics , 1997, J. Artif. Intell. Res..

[26]  Uwe Mönnich,et al.  Aspects of Philosophical Logic , 1981 .

[27]  Franz Baader,et al.  A Formal Definition for the Expressive Power of Terminological Knowledge Representation Languages , 1996, J. Log. Comput..