Some factors affecting the development, survival and prey consumption of Neoseiulus cucumeris (Acari: Phytoseiidae) feeding on Tetranychus urticae eggs (Acari: Tetranychidae)

Abstract Biological control of Tetranychus urticae relies mainly on specialist predators that are capable of coping with the dense web of spider mites. The role of generalist predators, however, has been less studied. To evaluate the development and predation of immature Neoseiulus cucumeris on Tetranychus urticae eggs, three experiments were conducted in the laboratory at 25 °C. The results showed that only 20–25% N. cucumeris eggs developed into adults when provided with 120 frozen spider mite eggs at the start of the experiment. The rate of predation by predator immatures and their survival increased with prey density. When N. cucumeris were fed 12–24 frozen spider mite eggs every day from larvae, they completed their immature development in 11–14 days and consumed 133–208 spider mite eggs. When the predator was offered 200 fresh spider mite eggs at the start of the experiment, they developed faster when fed every day, with adults emerging in 7 days. It was found that the webbing of spider mite lowered the predation of N. cucumeris. Compared with specialist predators, predation rates by N. cucumeris were much higher. The potential for N. cucumeris to control of T. urticae is discussed.

[1]  Xiao-qiang Yu,et al.  Effects of Wolbachia infection on the postmating response in Drosophila melanogaster , 2018, Behavioral Ecology and Sociobiology.

[2]  X. Hong,et al.  Effects of Wolbachia infection in Tetranychus urticae (Acari: Tetranychidae) on predation by Neoseiulus cucumeris (Acari: Phytoseiidae) , 2015 .

[3]  M. Osakabe,et al.  Effects of combination between web density and size of spider mite on predation by a generalist and a specialist phytoseiid mite , 2015, Experimental & applied acarology.

[4]  Zhi-qiang Zhang,et al.  Age and size at maturity in Tyrophagus curvipenis (Acari: Acaridae) when fed on three different diets , 2014 .

[5]  P. R. Reis,et al.  Biological control of Tetranychus urticae (Tetranychidae) on rosebushes using Neoseiulus californicus (Phytoseiidae) and agrochemical selectivity , 2014 .

[6]  G. J. Moraes,et al.  Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies , 2013 .

[7]  A. Mailleux,et al.  A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides , 2013, Journal of Pest Science.

[8]  Stefan R. Henz,et al.  The genome of Tetranychus urticae reveals herbivorous pest adaptations , 2011, Nature.

[9]  A. Walzer,et al.  Sex-specific developmental plasticity of generalist and specialist predatory mites (Acari: Phytoseiidae) in response to food stress , 2011, Biological journal of the Linnean Society. Linnean Society of London.

[10]  L. Tirry,et al.  Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. , 2010, Insect biochemistry and molecular biology.

[11]  A. Urbaneja,et al.  Efficacy of Neoseiulus californicus and Phytoseiulus persimilis in suppression of Tetranychus urticae in young clementine plants , 2010, Experimental and Applied Acarology.

[12]  M. Sabelis,et al.  Spider mite web mediates anti-predator behaviour , 2010, Experimental and Applied Acarology.

[13]  M. Sabelis,et al.  Biological control of an acarine pest by single and multiple natural enemies , 2009 .

[14]  A. Janssen,et al.  Biological control of thrips and whiteflies by a shared predator: Two pests are better than one , 2008 .

[15]  O. Liburd,et al.  Biological control of twospotted spider mite, Tetranychus urticae, with predatory mite, Neoseiulus californicus, in strawberries , 2007, Experimental and Applied Acarology.

[16]  P. Weintraub,et al.  Mites for the control of pests in protected cultivation. , 2007, Pest management science.

[17]  M. Hoy Mites of Greenhouses, Identification, Biology and Control , 2006 .

[18]  S. Rondon,et al.  Comparison of single and combination treatments of Phytoseiulus persimilis, Neoseiulus californicus, and Acramite (bifenazate) for control of twospotted spider mites in strawberries , 2006, Experimental & Applied Acarology.

[19]  F. Johansson,et al.  Phenotypic plasticity in gender specific life-history: effects of food availability and predation , 2005 .

[20]  Yong-Lak Park,et al.  Impact of twospotted spider mite (Acari: Tetranychidae) on growth and productivity of glasshouse cucumbers. , 2005, Journal of economic entomology.

[21]  G. Opit,et al.  Biological control of twospotted spider mites, Tetranychus urticae Koch (Acari: Tetranychidae), using Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae) on ivy geranium: assessment of predator release ratios , 2004 .

[22]  T. Gotoh,et al.  Prey consumption and functional response of three acarophagous species to eggs of the two-spotted spider mite in the laboratory , 2004 .

[23]  Phyllis G. Weintraub,et al.  Control of the broad mite (Polyphagotarsonemus latus (Banks)) on organic greenhouse sweet peppers (Capsicum annuum L.) with the predatory mite, Neoseiulus cucumeris (Oudemans) , 2003 .

[24]  A. Walzer,et al.  Combined versus Single Species Release of Predaceous Mites: Predator–Predator Interactions and Pest Suppression , 2001 .

[25]  F. García-Marí,et al.  Biological Control of Tetranychus Urticae (Acari: Tetranychidae) With Naturally Occurring Predators in Strawberry Plantings in Valenica, Spain , 1999, Experimental & Applied Acarology.

[26]  B. Croft,et al.  Activity, Feeding, and Development Among Larvae of Specialist and Generalist Phytoseiid Mite Species (Acari: Phytoseiidae) , 1999 .

[27]  B. Croft,et al.  Predation, Reproduction, and Impact of Phytoseiid Mites (Acari: Phytoseiidae) on Cyclamen Mite (Acari: Tarsonemidae) on Strawberry , 1998 .

[28]  B. Croft,et al.  A comparative life history study of immature Amblyseius fallacis, Amblyseius andersoni, Typhlodromus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae) with a review of larval feeding patterns in the family , 1994, Experimental & Applied Acarology.

[29]  Y. Deedat Problems Associated with the Use of Pesticides: An Overview , 1994 .

[30]  M. Sabelis,et al.  How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the Phytoseiidae , 1992, Experimental & Applied Acarology.

[31]  A. Gutierrez,et al.  An Introduction to Biological Control , 1983, Springer US.

[32]  S. Naranjo,et al.  Biological control of cotton pests in China , 2014 .

[33]  Ji Jie,et al.  Evaluation of Amblyseius cucumeris oudemans for control of pest mites of koerle pear and strategy for its practical application , 2006 .

[34]  W. Treder,et al.  CHANGES IN THE RATE OF GAS EXCHANGE, WATER CONSUMPTION AND GROWTH IN STRAWBERRY PLANTS INFESTED WITH THE TWO-SPOTTED SPIDER MITE , 2006 .

[35]  F. Bigler,et al.  Assessing the Effects of Bt Maize on the Predatory Mite Neoseiulus cucumeris , 2006, Experimental & Applied Acarology.

[36]  J. Fitzgerald,et al.  Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae) , 2004, Experimental & Applied Acarology.

[37]  J. Gonz Biological control of Tetranychus urticae (Acari: Tetranychidae) with naturally occurring predators in strawberry plantings in Valencia, Spain , 1999 .

[38]  C. Castañé,et al.  Biological Control of Thrips , 1999 .