Abstract. An accurate variational calculation has been performed for the ground-state-energy values of confined two-electron isoelectronic series from He to Ar16+. The confinement is obtained by embedding the ion in an overall charge neutral environment like that of a plasma. The confinement potential is chosen as that of a screened Coulomb potential between charges, obtained from a Debye model. The wave function is expanded in terms of product basis sets involving interparticle coordinates. The energy levels are found to be less bound with an increase of the screening parameter and ultimately become unstable. One- and two-particle moments have been calculated for the first time under such screening. The study is expected to throw new light on the behavior of the energy levels of foreign atoms embedded in an overall neutral environment which can be treated like a plasma.