Computing Teichmüller Maps Between Polygons

By the Riemann mapping theorem, one can bijectively map the interior of an n-gon P to that of another n-gon Q conformally (i.e., in an angle-preserving manner). However, when this map is extended to the boundary, it need not necessarily map the vertices of P to those of Q. For many applications, it is important to find the “best” vertex-preserving mapping between two polygons, i.e., one that minimizes the maximum angle distortion (the so-called dilatation). Such maps exist, are unique, and are known as extremal quasiconformal maps or Teichmüller maps. There are many efficient ways to approximate conformal maps, and the recent breakthrough result by Bishop computes a $$(1+\varepsilon )$$(1+ε)-approximation of the Riemann map in linear time. However, only heuristics have been studied in the case of Teichmüller maps. This paper solves the problem of finding a finite-time procedure for approximating Teichmüller maps in the continuous setting. Our construction is via an iterative procedure that is proven to converge in $$O(\text {poly}(1/\varepsilon ))$$O(poly(1/ε)) iterations to a map whose dilatation is at most $$\varepsilon $$ε more than that of the Teichmüller map, for any $$\varepsilon >0$$ε>0. We reduce the problem of finding an approximation algorithm for computing Teichmüller maps to two basic subroutines, namely, computing discrete (1) compositions and (2) inverses of discretely represented quasiconformal maps. Assuming finite-time solvers for these subroutines, we provide an approximation algorithm with an additive error of at most $$\varepsilon $$ε.

[1]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[2]  Tobin A. Driscoll,et al.  Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation , 1998, SIAM J. Sci. Comput..

[3]  Christopher J. Bishop,et al.  Conformal Mapping in Linear Time , 2010, Discret. Comput. Geom..

[4]  C. Carathéodory,et al.  Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis , 1913 .

[5]  David Mumford,et al.  2D-Shape Analysis Using Conformal Mapping , 2004, CVPR.

[6]  Lok Ming Lui,et al.  Convergence of an iterative algorithm for Teichmüller maps via harmonic energy optimization , 2015, Math. Comput..

[7]  L. Ahlfors,et al.  Lectures on quasiconformal mappings , 1966 .

[8]  J. Hubbard Teichmüller Theory and Applications to Geometry, Topology, and Dynamics , 2016 .

[9]  Denis Zorin,et al.  Computing Extremal Quasiconformal Maps , 2012, Comput. Graph. Forum.

[10]  Wei Zeng,et al.  Ricci Flow for 3D Shape Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  Oswald Teichmüller,et al.  Extremale quasikonforme Abbildungen und quadratische Differentiale , 1940 .

[12]  P. Daripa A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings , 1993 .

[13]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[14]  Xianfeng Gu,et al.  Computing Teichmüller Maps between Polygons , 2015, Symposium on Computational Geometry.

[15]  Sen Wang,et al.  High resolution tracking of non-rigid 3D motion of densely sampled data using harmonic maps , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Lok Ming Lui,et al.  Optimization of Surface Registrations Using Beltrami Holomorphic Flow , 2010, J. Sci. Comput..

[17]  Otto Forster,et al.  Lectures on Riemann Surfaces , 1999 .

[18]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[20]  Oswald Teichmüller,et al.  Bestimmung der extremalen quasikonformen Abbildungen bei geschlossenen orientierten Riemannschen Flächen , 1943 .

[21]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[22]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[23]  Shing-Tung Yau,et al.  Global Conformal Parameterization , 2003, Symposium on Geometry Processing.

[24]  Lok Ming Lui,et al.  Teichmuller Mapping (T-Map) and Its Applications to Landmark Matching Registration , 2014, SIAM J. Imaging Sci..

[25]  E. Sharon,et al.  2D-Shape Analysis Using Conformal Mapping , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[26]  Denis Gaidashev,et al.  On Numerical Algorithms for the Solution of a Beltrami Equation , 2008, SIAM J. Numer. Anal..