MESH OPTIMIZATION BASED ON THE CENTROIDAL VORONOI TESSELLATION

The subject of mesh generation and optimization is very important in many scientific applications. In this paper, we investigate the issue of mesh optimization via the construction of Centroidal Voronoi Tessellations. Given some initial Delaunay meshes with only average quality, it is shown that the CVT based mesh optimization generates a robust, high quality mesh which does not rely critically on the choice of the initial mesh. In comparison, other smoothing techniques, such as the classical Laplacian smoothing, tend to be more sensitive to the initial distributions of vertices. Thus, the CVT based optimization may be advocated as a prefered choice for mesh optimization and

[1]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[2]  Donald J. Newman,et al.  The hexagon theorem , 1982, IEEE Trans. Inf. Theory.

[3]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[4]  N. Sloane,et al.  The Optimal Lattice Quantizer in Three Dimensions , 1983 .

[5]  E. A. Dari,et al.  Mesh optimization: How to obtain good unstructured 3D finite element meshes with not-so-good mesh generators , 1994 .

[6]  N. Weatherill,et al.  Efficient three‐dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints , 1994 .

[7]  N. Madsen Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .

[8]  H. Borouchaki,et al.  Fast Delaunay triangulation in three dimensions , 1995 .

[9]  N. Weatherill,et al.  Unstructured grid generation using iterative point insertion and local reconnection , 1995 .

[10]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[11]  David L. Neuhoff,et al.  Quantization , 2022, IEEE Trans. Inf. Theory.

[12]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[13]  H. Borouchaki,et al.  Adaptive triangular–quadrilateral mesh generation , 1998 .

[14]  Patrick M. Knupp,et al.  Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-Movement , 1999, IMR.

[15]  Patrick M. Knupp,et al.  Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number , 1999, IMR.

[16]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[17]  Herbert Edelsbrunner,et al.  Sink-insertion for mesh improvement , 2001, SCG '01.

[18]  Desheng Wang,et al.  Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .

[19]  Todd S. Munson,et al.  A Comparison Of Optimization Software For Mesh Shape-Quality Improvement Problems , 2002, IMR.

[20]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  M. Gunzburger,et al.  Meshfree, probabilistic determination of point sets and support regions for meshless computing , 2002 .

[22]  L. Freitag,et al.  Tetrahedral mesh improvement via optimization of the element condition number , 2002 .

[23]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[24]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[25]  Qiang Du,et al.  Constrained boundary recovery for three dimensional Delaunay triangulations , 2004 .

[26]  Q. Du,et al.  Boundary recovery for three dimensional conforming Delaunay triangulation , 2004 .

[27]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[28]  Q. Du,et al.  The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .

[29]  Qiang Du,et al.  Mesh and solver co‐adaptation in finite element methods for anisotropic problems , 2005 .

[30]  Qiang Du,et al.  Acceleration schemes for computing centroidal Voronoi tessellations , 2006, Numer. Linear Algebra Appl..

[31]  Nigel P. Weatherill,et al.  A stitching method for the generation of unstructured meshes for use with co-volume solution techniques , 2006 .