Efficient stochastic thermostatting of path integral molecular dynamics.

The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.

[1]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[2]  Ian R. Craig,et al.  Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. , 2004, The Journal of chemical physics.

[3]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[4]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[5]  Giovanni Bussi,et al.  Colored-Noise Thermostats à la Carte , 2010, 1204.0822.

[6]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[7]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[8]  David E Manolopoulos,et al.  On the short-time limit of ring polymer molecular dynamics. , 2006, The Journal of chemical physics.

[9]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[10]  H. Trotter On the product of semi-groups of operators , 1959 .

[11]  Bruce J. Berne,et al.  Nonergodicity in path integral molecular dynamics , 1984 .

[12]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[13]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[14]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[15]  Giovanni Bussi,et al.  Langevin equation with colored noise for constant-temperature molecular dynamics simulations. , 2008, Physical review letters.

[16]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[17]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[18]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[19]  Anders Wallqvist,et al.  Path-integral simulation of pure water☆ , 1985 .

[20]  David E. Manolopoulos,et al.  A refined ring polymer contraction scheme for systems with electrostatic interactions , 2008 .

[21]  C. DeWitt-Morette,et al.  Techniques and Applications of Path Integration , 1981 .

[22]  R. A. Kuharski,et al.  A quantum mechanical study of structure in liquid H2O and D2O , 1985 .

[23]  Michele Parrinello,et al.  Stochastic thermostats: comparison of local and global schemes , 2008, Comput. Phys. Commun..

[24]  S. Adler Over-relaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions , 1981 .

[25]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[26]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[27]  Gregory A. Voth,et al.  Simple reversible molecular dynamics algorithms for Nosé-Hoover chain dynamics , 1997 .

[28]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[29]  D. Manolopoulos,et al.  An efficient ring polymer contraction scheme for imaginary time path integral simulations. , 2008, The Journal of chemical physics.

[30]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[31]  Bryan M. Wong,et al.  An embedded-atom method interatomic potential for Pd–H alloys , 2008 .

[32]  M. Parrinello,et al.  Accurate sampling using Langevin dynamics. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[34]  G. Ciccotti,et al.  Algorithms for Brownian dynamics , 2003 .

[35]  Thomas E. Markland,et al.  Competing quantum effects in the dynamics of a flexible water model. , 2009, The Journal of chemical physics.

[36]  J. A. Barker A quantum‐statistical Monte Carlo method; path integrals with boundary conditions , 1979 .

[37]  M. Kalos Monte Carlo Methods in Quantum Problems , 1984 .

[38]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[39]  Giovanni Bussi,et al.  Nuclear quantum effects in solids using a colored-noise thermostat. , 2009, Physical review letters.