Nonlinear dynamics, chaos and complex cardiac arrhythmias

Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise to complex dynamics that is well described by one-dimensional finite difference equations. As stimulation parameters are varied, a large number of different phase locked and chaotic rhythms is observed. Similar rhythms can be observed in the intact human heart when there is interaction between two pacemaker sites. Simplified models are analysed, which show some correspondence to clinical observations.

[1]  L. Olsen,et al.  Chaos in biological systems. , 1985 .

[2]  L. Glass,et al.  UNIVERSALITY AND SELF-SIMILARITY IN THE BIFURCATIONS OF CIRCLE MAPS , 1985 .

[3]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[4]  J Jalife,et al.  A Mathematical Model of Parasystole and its Application to Clinical Arrhythmias , 1977, Circulation.

[5]  A L Goldberger,et al.  Nonlinear dynamics in heart failure: implications of long-wavelength cardiopulmonary oscillations. , 1984, American heart journal.

[6]  G. Burch,et al.  Chaotic atrial mechanism. , 1969, American heart journal.

[7]  L Glass,et al.  Phase resetting of spontaneously beating embryonic ventricular heart cell aggregates. , 1986, The American journal of physiology.

[8]  J. Davidenko,et al.  Modulation of Parasystolic Activity by Nonparasystolic Beats , 1982, Circulation.

[9]  José Jalife,et al.  Cardiac electrophysiology and arrhythmias , 1985 .

[10]  C Antzelevitch,et al.  The Case for Modulated Parasystole , 1982, Pacing and clinical electrophysiology : PACE.

[11]  R. Pérez,et al.  Bifurcation and chaos in a periodically stimulated cardiac oscillator , 1983 .

[12]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[13]  Gottfried Mayer-Kress,et al.  Dimensions and Entropies in Chaotic Systems , 1986 .

[14]  G. P. Moore,et al.  Pacemaker Neurons: Effects of Regularly Spaced Synaptic Input , 1964, Science.

[15]  P. Cvitanović Universality in Chaos , 1989 .

[16]  J Jalife,et al.  Effect of Electrotonic Potentials on Pacemaker Activity of Canine Purkinje Fibers in Relation to Parasystole , 1976, Circulation research.

[17]  M. N. Levy,et al.  Role of the compensatory pause in the production of concealed bigeminy. , 1974, The American journal of cardiology.

[18]  L. Glass,et al.  Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. , 1981, Science.

[19]  Edward K. Chung,et al.  Principles of cardiac arrhythmias , 1983 .

[20]  R. Gilmour,et al.  Slow inward current and cardiac arrhythmias. , 1985, The American journal of cardiology.

[21]  Richard I. Kitney,et al.  The Study of heart-rate variability , 1980 .

[22]  H. Marriott,et al.  Concealed Ventricular Extrasystoles , 1963, Circulation.

[23]  L. Glass,et al.  Global bifurcations of a periodically forced biological oscillator , 1984 .

[24]  R. Cohen,et al.  Simple finite-element model accounts for wide range of cardiac dysrhythmias. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Kinoshita Mechanisms of Ventricular Parasystole , 1978, Circulation.

[26]  Theodosios Pavlidis,et al.  Biological Oscillators: Their Mathematical Analysis , 1973 .

[27]  A. Castellanos,et al.  Annihilation, entrainment and modulation of ventricular parasystolic rhythms. , 1984, The American journal of cardiology.