Why are solitons stable

The theory of linear dispersive equations predicts that waves should spread out and disperse over time. However, it is a remarkable phenomenon, observed both in theory and practice, that once nonlinear effects are taken into account, \emph{solitary wave} or \emph{soliton} solutions can be created, which can be stable enough to persist indefinitely. The construction of such solutions is relatively straightforward, but the fact that they are \emph{stable} requires some significant amounts of analysis to establish, in part due to symmetries in the equation (such as translation invariance) which create degeneracy in the stability analysis. The theory is particularly difficult in the \emph{critical} case in which the nonlinearity is at exactly the right power to potentially allow for a self-similar blowup. In this article we survey some of the highlights of this theory, from the more classical orbital stability analysis of Weinstein and Grillakis-Shatah-Strauss, to the more recent asymptotic stability and blowup analysis of Martel-Merle and Merle-Raphael, as well as current developments in using this theory to rigorously demonstrate controlled blowup for several key equations.

[1]  H. Spohn Kinetic equations from Hamiltonian dynamics: Markovian limits , 1980 .

[2]  F. Merle,et al.  Nonexistence of blow-up solution with minimal L2-mass for the critical gKdV equation , 2002 .

[3]  S. B. Kuksin Analysis of Hamiltonian PDEs , 2000 .

[4]  Wilhelm Schlag,et al.  Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension , 2006 .

[5]  F. Merle,et al.  Refined asymptotics around solitons for gKdV equations , 2007, 0706.1178.

[6]  Maciej Zworski,et al.  Fast Soliton Scattering by Delta Impurities , 2007 .

[7]  M. Ablowitz,et al.  Asymptotic solutions and conservation laws for the nonlinear Schrödinger equation. I , 1976 .

[8]  F. Merle,et al.  A Liouville theorem for vector-valued nonlinear heat equations and applications , 2000 .

[9]  Frank Merle,et al.  Blow up in finite time and dynamics of blow up solutions for the L^2-critical generalized KdV equation , 2002 .

[10]  P. Lax INTEGRALS OF NONLINEAR EQUATIONS OF EVOLUTION AND SOLITARY WAVES. , 1968 .

[11]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[12]  R. Cote Construction of solutions to the $L^2$-critical KdV equation with a given asymptotic behaviour , 2007 .

[13]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[14]  F. Merle,et al.  Stability in $H^1$ of the sum of $K$ solitary waves for some nonlinear Schrödinger equations , 2006 .

[15]  F. Smith,et al.  Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[16]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[17]  Frank Merle,et al.  Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation , 2002 .

[18]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[19]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[21]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[22]  SPECTRAL THEORY AND NONLINEAR PDE: A SURVEY , 2005, math/0509019.

[23]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[24]  C. Kenig,et al.  Well‐posedness and scattering results for the generalized korteweg‐de vries equation via the contraction principle , 1993 .

[25]  Yvan Martel,et al.  Asymptotic Stability of Solitons¶for Subcritical Generalized KdV Equations , 2001 .

[26]  Wilhelm Schlag,et al.  Renormalization and blow up for charge one equivariant critical wave maps , 2006, math/0610248.

[27]  R. Cote Large data wave operator for the generalized Korteweg-de Vries equations , 2006, Differential and Integral Equations.

[28]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[29]  F. Merle,et al.  Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .

[30]  C. V. Coffman Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions , 1972 .

[31]  On the focusing critical semi-linear wave equation , 2005, math/0508574.

[32]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[33]  I. Rodnianski,et al.  Dispersive analysis of charge transfer models , 2003, math/0309112.

[34]  G. Perelman Asymptotic Stability of Multi-soliton Solutions for Nonlinear Schrödinger Equations , 2003 .

[35]  N. Tzvetkov On the long time behavior of KDV type equations , 2004 .

[36]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.

[37]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[38]  On the asymptotic behavior of large radial data for a focusing non-linear Schr\ , 2003, math/0309428.

[39]  Tetsu Mizumachi,et al.  Asymptotic stability of solitary wave solutions to the regularized long-wave equation , 2004 .

[40]  Yvan Martel,et al.  Linear Problems Related to Asymptotic Stability of Solitons of the Generalized KdV Equations , 2006, SIAM J. Math. Anal..

[41]  Frank Merle,et al.  Asymptotic stability of solitons of the subcritical gKdV equations revisited , 2005 .

[42]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[43]  Frank Merle,et al.  Stability of Two Soliton Collision for Nonintegrable gKdV Equations , 2007, 0709.2677.

[44]  Terence Tao,et al.  Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions , 2007 .

[45]  R. Pego,et al.  On asymptotic stability of solitary waves , 1992 .

[46]  Frank Merle,et al.  Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation , 2003 .

[47]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[48]  Frank Merle,et al.  On universality of blow-up profile for L2 critical nonlinear Schrödinger equation , 2004 .

[49]  A. Soffer Soliton dynamics and scattering , 2006 .

[50]  T. Tao A (concentration-)compact attractor for high-dimensional non-linear Schr\ , 2006, math/0611402.

[51]  M. Zworski,et al.  Soliton interaction with slowly varying potentials , 2007, 0709.0478.

[52]  Yvan Martel,et al.  Asymptotic N-soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations , 2005 .

[53]  Monica Visan,et al.  The mass-critical nonlinear Schr\"odinger equation with radial data in dimensions three and higher , 2007, 0708.0849.

[54]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[55]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[57]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[58]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[59]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[60]  Alan C. Newell,et al.  Nonlinear wave motion , 1974 .

[61]  F. Merle,et al.  Description of two soliton collision for the quartic gKdV equation , 2007, 0709.2672.

[62]  W. Schlag,et al.  The nonlinear Schrödinger equation , 2008 .

[63]  I. Rodnianski,et al.  On the formation of singularities in the critical $O(3)$ $\sigma$-model , 2006, math/0605023.

[64]  Tai-Peng Tsai,et al.  Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gKdV Equations , 2001 .

[65]  Khaled El Dika Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation , 2005 .

[66]  Pierre Raphaël,et al.  The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation , 2005 .

[67]  Carlos E. Kenig,et al.  Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case , 2006 .

[68]  Khaled El Dika Stabilité asymptotique des ondes solitaires de l'équation de Benjamin–Bona–Mahony , 2003 .

[69]  R. Cote Construction of solutions to the subcritical gKdV equations with a given asymptotical behavior , 2006 .

[70]  B. Gidas,et al.  Symmetry of positive solutions of nonlinear elliptic equations in R , 1981 .

[71]  Slow blow-up solutions for the H^1(R^3) critical focusing semi-linear wave equation in R^3 , 2007, math/0702033.

[72]  R. S. Ward,et al.  Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces , 1999 .

[73]  Y. Martel,et al.  Smoothness and Exponential Decay of L 2-Compact Solutions of the Generalized KdV Equations , 2005 .

[74]  S. Manakov,et al.  Asymptotic behavior of non-linear wave systems integrated by the inverse scattering method , 1996 .

[75]  H. Helson Harmonic Analysis , 1983 .

[76]  Frank Merle,et al.  Asymptotic stability of solitons of the gKdV equations with general nonlinearity , 2007, 0706.1174.

[77]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[78]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[79]  Frank Merle,et al.  A Liouville theorem for the critical generalized Korteweg–de Vries equation , 2000 .

[80]  Global well-posedness and scattering for the mass-critical nonlinear Schr\"odinger equation for radial data in high dimensions , 2006, math/0609692.

[81]  Frank Merle,et al.  Existence of blow-up solutions in the energy space for the critical generalized KdV equation , 2001 .

[82]  J. Bona On the stability theory of solitary waves , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.