Study of Antimicrobial Resistance, Biofilm Formation, and Motility of Pseudomonas aeruginosa Derived from Urine Samples

Pseudomonas aeruginosa causes urinary tract infections associated with catheters by forming biofilms on the surface of indwelling catheters. Therefore, controlling the spread of the bacteria is crucial to preventing its transmission in hospitals and the environment. Thus, our objective was to determine the antibiotic susceptibility profiles of twenty-five P. aeruginosa isolates from UTIs at the Medical Center of Trás-os-Montes and Alto Douro (CHTMAD). Biofilm formation and motility are also virulence factors studied in this work. Out of the twenty-five P. aeruginosa isolates, 16% exhibited multidrug resistance, being resistant to at least three classes of antibiotics. However, the isolates showed a high prevalence of susceptibility to amikacin and tobramycin. Resistance to carbapenem antibiotics, essential for treating infections when other antibiotics fail, was low in this study, Notably, 92% of the isolates demonstrated intermediate sensitivity to ciprofloxacin, raising concerns about its efficacy in controlling the disease. Genotypic analysis revealed the presence of various β-lactamase genes, with class B metallo-β-lactamases (MBLs) being the most common. The blaNDM, blaSPM, and blaVIM-VIM2 genes were detected in 16%, 60%, and 12% of the strains, respectively. The presence of these genes highlights the emerging threat of MBL-mediated resistance. Additionally, virulence gene analysis showed varying prevalence rates among the strains. The exoU gene, associated with cytotoxicity, was found in only one isolate, while other genes such as exoS, exoA, exoY, and exoT had a high prevalence. The toxA and lasB genes were present in all isolates, whereas the lasA gene was absent. The presence of various virulence genes suggests the potential of these strains to cause severe infections. This pathogen demonstrated proficiency in producing biofilms, as 92% of the isolates were found to be capable of doing so. Currently, antibiotic resistance is one of the most serious public health problems, as options become inadequate with the continued emergence and spread of multidrug-resistant strains, combined with the high rate of biofilm production and the ease of dissemination. In conclusion, this study provides insights into the antibiotic resistance and virulence profiles of P. aeruginosa strains isolated from human urine infections, highlighting the need for continued surveillance and appropriate therapeutic approaches.

[1]  C. Cristea,et al.  Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. , 2022, Analytica chimica acta.

[2]  R. Floyd,et al.  Invasion and diversity in Pseudomonas aeruginosa urinary tract infections , 2022, Journal of medical microbiology.

[3]  D. Débarre,et al.  Substrate stiffness impacts early biofilm formation by modulating Pseudomonas aeruginosa twitching motility , 2022, bioRxiv.

[4]  M. Saki,et al.  Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran , 2022, Molecular Biology Reports.

[5]  G. Igrejas,et al.  Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa , 2021, International journal of molecular sciences.

[6]  J. Pilewski,et al.  Acidic Microenvironment Determines Antibiotic Susceptibility and Biofilm Formation of Pseudomonas aeruginosa , 2021, Frontiers in Microbiology.

[7]  A. Onipede,et al.  Antibiotic resistance pattern of Pseudomonas spp. from patients in a tertiary hospital in South-West Nigeria. , 2021, Germs.

[8]  Madhu Dyavaiah,et al.  Sesamin and sesamolin rescues Caenorhabditis elegans from Pseudomonas aeruginosa infection through the attenuation of quorum sensing regulated virulence factors. , 2021, Microbial pathogenesis.

[9]  G. Nakazato,et al.  Subinhibitory Concentrations of Biogenic Silver Nanoparticles Affect Motility and Biofilm Formation in Pseudomonas aeruginosa , 2021, Frontiers in Cellular and Infection Microbiology.

[10]  J. Engel,et al.  Mechanotaxis directs Pseudomonas aeruginosa twitching motility , 2021, Proceedings of the National Academy of Sciences.

[11]  K. Chiam,et al.  Dynamic swimming pattern of Pseudomonas aeruginosa near a vertical wall during initial attachment stages of biofilm formation , 2021, Scientific Reports.

[12]  Minh Tam Tran Thi,et al.  Pseudomonas aeruginosa Biofilms , 2020, International journal of molecular sciences.

[13]  Thomas E. Wood,et al.  From Welfare to Warfare: The Arbitration of Host-Microbiota Interplay by the Type VI Secretion System , 2020, Frontiers in Cellular and Infection Microbiology.

[14]  D. Parai,et al.  Naringin sensitizes the antibiofilm effect of ciprofloxacin and tetracycline against Pseudomonas aeruginosa biofilm. , 2020, International journal of medical microbiology : IJMM.

[15]  C. Provot,et al.  Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections , 2020, Frontiers in Microbiology.

[16]  P. Higgins,et al.  Molecular surveillance of carbapenemase-producing Pseudomonas aeruginosa at three medical centres in Cologne, Germany , 2019, Antimicrobial Resistance and Infection Control.

[17]  J. Dobnikar,et al.  Effect of Topographical Steps on the Surface Motility of the Bacterium Pseudomonas aeruginosa. , 2019, ACS biomaterials science & engineering.

[18]  M. Devereux,et al.  Disarming Pseudomonas aeruginosa Virulence by the Inhibitory Action of 1,10-Phenanthroline-5,6-Dione-Based Compounds: Elastase B (LasB) as a Chemotherapeutic Target , 2019, Front. Microbiol..

[19]  Shaomin Yan,et al.  Can Biofilm Be Reversed Through Quorum Sensing in Pseudomonas aeruginosa? , 2019, Front. Microbiol..

[20]  S. Shoja,et al.  Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. , 2018, Le infezioni in medicina : rivista periodica di eziologia, epidemiologia, diagnostica, clinica e terapia delle patologie infettive.

[21]  M. Salih,et al.  Molecular characterization of Pseudomonas aeruginosa isolates from Sudanese patients: A cross-sectional study , 2018, F1000Research.

[22]  Florian P Maurer,et al.  Carbapenem-resistant Gram-negative pathogens in a German university medical center: Prevalence, clinical implications and the role of novel β-lactam/β-lactamase inhibitor combinations , 2018, PloS one.

[23]  L. R. Alves,et al.  Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing , 2018, The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases.

[24]  Shuhong Sun,et al.  Molecular Characterization of Antimicrobial Resistance in Escherichia coli from Rabbit Farms in Tai'an, China , 2018, BioMed research international.

[25]  A. L. Santos,et al.  Heterogeneous production of proteases from Brazilian clinical isolates of Pseudomonas aeruginosa. , 2017, Enfermedades infecciosas y microbiologia clinica.

[26]  L. MacNeil,et al.  Pseudomonas aeruginosa type IV minor pilins and PilY1 regulate virulence by modulating FimS-AlgR activity , 2017, bioRxiv.

[27]  J. Fothergill,et al.  The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. , 2017, FEMS microbiology letters.

[28]  A. Mérieau,et al.  The Type VI Secretion System: A Dynamic System for Bacterial Communication? , 2017, Front. Microbiol..

[29]  Suresh Neethirajan,et al.  Electroceutical Approach for Impairing the Motility of Pathogenic Bacterium Using a Microfluidic Platform , 2017, Micromachines.

[30]  K. Ko,et al.  Microbiological features and clinical impact of the type VI secretion system (T6SS) in Acinetobacter baumannii isolates causing bacteremia , 2017, Virulence.

[31]  C. Torres,et al.  Characterisation of carbapenem-resistance mechanisms in clinical Pseudomonas aeruginosa isolates recovered in a Spanish hospital. , 2017 .

[32]  M. Castanheira,et al.  Pseudomonas aeruginosa Antimicrobial Susceptibility Results from Four Years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States , 2017, Antimicrobial Agents and Chemotherapy.

[33]  F. Fallah,et al.  Molecular detection of virulence genes in Pseudomonas aeruginosa isolated from children with Cystic Fibrosis and burn wounds in Iran. , 2016, Microbial pathogenesis.

[34]  M. Yousefi,et al.  Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran , 2016, GMS hygiene and infection control.

[35]  M. Ahangarzadeh Rezaee,et al.  Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran , 2016, Iranian journal of microbiology.

[36]  C. Kulah,et al.  Investigation of OprD Porin Protein Levels in Carbapenem-Resistant Pseudomonas aeruginosa Isolates , 2015, Jundishapur journal of microbiology.

[37]  B. Kazmierczak,et al.  Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. , 2015, Current opinion in microbiology.

[38]  L. Burrows,et al.  Biogenesis of Pseudomonas aeruginosa type IV pili and regulation of their function. , 2015, Environmental microbiology.

[39]  F. Klawonn,et al.  The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition , 2015, Infection and Immunity.

[40]  M. Nour,et al.  Genetic Identification of Pseudomonas aeruginosa Virulence Genes among Different Isolates , 2015 .

[41]  H. Stone,et al.  Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa , 2015, Proceedings of the National Academy of Sciences.

[42]  S. McClean,et al.  Bacterial Adaptation during Chronic Respiratory Infections , 2015, Pathogens.

[43]  T. Sawa,et al.  Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review , 2014, Critical Care.

[44]  M. Taherikalani,et al.  Determination of extended spectrum beta-lactamases, metallo-beta-lactamases and AmpC-beta-lactamases among carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. , 2014, Burns : journal of the International Society for Burn Injuries.

[45]  S. Chhibber,et al.  Molecular detection of virulence genes as markers in Pseudomonas aeruginosa isolated from urinary tract infections. , 2014, International journal of molecular epidemiology and genetics.

[46]  H. Momtaz,et al.  Virulence Gene Profiles of Multidrug-Resistant Pseudomonas aeruginosa Isolated From Iranian Hospital Infections , 2014, Iranian Red Crescent medical journal.

[47]  R. Garg,et al.  Comparative Study of Biofilm Formation in Pseudomonas aeruginosa Isolates from Patients of Lower Respiratory Tract Infection. , 2014, Journal of clinical and diagnostic research : JCDR.

[48]  Vincent T. Lee,et al.  Catheter-Associated Urinary Tract Infection by Pseudomonas aeruginosa Is Mediated by Exopolysaccharide-Independent Biofilms , 2014, Infection and Immunity.

[49]  A. Pitondo-Silva,et al.  Pathogenic potential and genetic diversity of environmental and clinical isolates of Pseudomonas aeruginosa , 2014, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[50]  R. Geffers,et al.  Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa , 2013, PloS one.

[51]  S. Janković,et al.  Nosocomial urinary tract infections caused by Pseudomonas aeruginosa and Acinetobacter species: sensitivity to antibiotics and risk factors. , 2013, American journal of infection control.

[52]  S. Abidi,et al.  Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan , 2013, BMC Ophthalmology.

[53]  B. Cournoyer,et al.  Lagooning of wastewaters favors dissemination of clinically relevant Pseudomonas aeruginosa. , 2013, Research in microbiology.

[54]  Chander Anil,et al.  ANTIMICROBIAL SUSCEPTIBILITY PATTERNS OF PSEUDOMONAS AERUGINOSA CLINICAL ISOLATES AT A TERTIARY CARE HOSPITAL IN KATHMANDU, NEPAL , 2013 .

[55]  U. Sekar,et al.  bla(IMP) and bla(VIM) mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. , 2012, Journal of infection in developing countries.

[56]  L. Burrows Pseudomonas aeruginosa twitching motility: type IV pili in action. , 2012, Annual review of microbiology.

[57]  T. Mah Biofilm-specific antibiotic resistance. , 2012, Future microbiology.

[58]  A. Gales,et al.  Metallo-β-lactamase-production in meropenem-susceptible Pseudomonas aeruginosa isolates: risk for silent spread. , 2012, Memorias do Instituto Oswaldo Cruz.

[59]  S. Hong,et al.  Multiplex PCR for Rapid Detection of Genes Encoding Class A Carbapenemases , 2012, Annals of laboratory medicine.

[60]  R. Alaghehbandan,et al.  KPC-producer gram negative bacteria among burned infants in Motahari Hospital, Tehran: first report from Iran. , 2012, Annals of burns and fire disasters.

[61]  B. Kazmierczak,et al.  Type IV Pilus Assembly in Pseudomonas aeruginosa over a Broad Range of Cyclic di-GMP Concentrations , 2012, Journal of bacteriology.

[62]  W. Hol,et al.  The type II secretion system: biogenesis, molecular architecture and mechanism , 2012, Nature Reviews Microbiology.

[63]  Karina B. Xavier,et al.  The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa , 2012, Microbiology and Molecular Reviews.

[64]  D. Livermore,et al.  The emerging NDM carbapenemases. , 2011, Trends in microbiology.

[65]  T. Mah,et al.  Pseudomonas aeruginosa tssC1 Links Type VI Secretion and Biofilm-Specific Antibiotic Resistance , 2011, Journal of bacteriology.

[66]  N. Tufenkji,et al.  The Swarming Motility of Pseudomonas aeruginosa Is Blocked by Cranberry Proanthocyanidins and Other Tannin-Containing Materials , 2011, Applied and Environmental Microbiology.

[67]  G. O’Toole Microtiter dish biofilm formation assay. , 2011, Journal of visualized experiments : JoVE.

[68]  S. Chevalier,et al.  Full Virulence of Pseudomonas aeruginosa Requires OprF , 2010, Infection and Immunity.

[69]  M. Burattini,et al.  Metallo‐beta‐lactamases among imipenem‐resistant Pseudomonas aeruginosa in a brazilian university hospital , 2010, Clinics.

[70]  Mathias Müsken,et al.  A 96-well-plate–based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing , 2010, Nature Protocols.

[71]  B. Markova,et al.  Prevalence of Virulence Genes Among Bulgarian Nosocomial and Cystic Fibrosis Isolates of Pseudomonas Aeruginosa , 2010, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology].

[72]  T. Murray,et al.  Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. , 2010, Journal of medical microbiology.

[73]  D. Berrar,et al.  Pseudomonas aeruginosa Cystic Fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro , 2010, BMC Microbiology.

[74]  L. Burrows,et al.  Novel Proteins That Modulate Type IV Pilus Retraction Dynamics in Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[75]  Somsuvra B. Ghatak,et al.  Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India , 2008, Indian journal of pharmacology.

[76]  Michelle D. Brazas,et al.  Swarming of Pseudomonas aeruginosa Is a Complex Adaptation Leading to Increased Production of Virulence Factors and Antibiotic Resistance , 2008, Journal of bacteriology.

[77]  Julien Tremblay,et al.  Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. , 2007, Environmental microbiology.

[78]  F. Baquero,et al.  Antibiotics as intermicrobial signaling agents instead of weapons , 2006, Proceedings of the National Academy of Sciences.

[79]  N. Woodford,et al.  Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. , 2006, The Journal of antimicrobial chemotherapy.

[80]  V. Venturi Regulation of quorum sensing in Pseudomonas. , 2006, FEMS microbiology reviews.

[81]  T. Sawa,et al.  Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. , 2006, Medecine et maladies infectieuses.

[82]  S. Molin,et al.  Heterogeneity of Biofilms Formed by Nonmucoid Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis , 2005, Journal of Clinical Microbiology.

[83]  M. Nucci,et al.  Risk Factors for Acquisition of Multidrug-Resistant Pseudomonas aeruginosa Producing SPM Metallo-β-Lactamase , 2005, Antimicrobial Agents and Chemotherapy.

[84]  G. O’Toole,et al.  Evidence for Two Flagellar Stators and Their Role in the Motility of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[85]  J. Schaber,et al.  Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. , 2004, Journal of medical microbiology.

[86]  M. Parsek,et al.  Identification of psl, a Locus Encoding a Potential Exopolysaccharide That Is Essential for Pseudomonas aeruginosa PAO1 Biofilm Formation , 2004, Journal of bacteriology.

[87]  S. Rice,et al.  Pseudomonas aeruginosa with lasI quorum-sensing deficiency during corneal infection. , 2004, Investigative ophthalmology & visual science.

[88]  J. Emerson,et al.  Clinically Feasible Biofilm Susceptibility Assay for Isolates of Pseudomonas aeruginosa from Patients with Cystic Fibrosis , 2004, Journal of Clinical Microbiology.

[89]  Gianfranco Amicosante,et al.  Multiple CTX-M-Type Extended-Spectrum β-Lactamases in Nosocomial Isolates of Enterobacteriaceae from a Hospital in Northern Italy , 2003, Journal of Clinical Microbiology.

[90]  J. Wiener-Kronish,et al.  Single-Nucleotide-Polymorphism Mapping of the Pseudomonas aeruginosa Type III Secretion Toxins for Development of a Diagnostic Multiplex PCR System , 2003, Journal of Clinical Microbiology.

[91]  P. Nordmann,et al.  Ambler Class A Extended-Spectrum β-Lactamases in Pseudomonas aeruginosa: Novel Developments and Clinical Impact , 2003, Antimicrobial Agents and Chemotherapy.

[92]  F. Lépine,et al.  rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. , 2003, Microbiology.

[93]  P. Gastmeier Nosocomial urinary tract infections: many unresolved questions. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[94]  A. Hauser,et al.  Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. , 2001, Microbiology.

[95]  E. Bouza,et al.  A European perspective on nosocomial urinary tract infections I. Report on the microbiology workload, etiology and antimicrobial susceptibility (ESGNI-003 study). European Study Group on Nosocomial Infections. , 2001, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[96]  A. Oliver,et al.  Characterization of Clinical Isolates ofKlebsiella pneumoniae from 19 Laboratories Using the National Committee for Clinical Laboratory Standards Extended-Spectrum β-Lactamase Detection Methods , 2001, Journal of Clinical Microbiology.

[97]  C. van Delden,et al.  Swarming of Pseudomonas aeruginosa Is Dependent on Cell-to-Cell Signaling and Requires Flagella and Pili , 2000, Journal of bacteriology.

[98]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[99]  J W Warren,et al.  Catheter-associated urinary tract infections. , 1997, International journal of antimicrobial agents.

[100]  B. Iglewski,et al.  Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.

[101]  P. Seed,et al.  Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[102]  J. Mattick,et al.  Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre‐pilin‐like leader sequence , 1995, Molecular microbiology.

[103]  G. Paul,et al.  Nucleotide sequences of the genes coding for the TEM-like beta-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). , 1994, FEMS microbiology letters.

[104]  J. Vliegenthart,et al.  Nomenclature of aminoglycoside resistance genes: a comment , 1993, Antimicrobial Agents and Chemotherapy.

[105]  S. Lory,et al.  Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili , 1990, Journal of bacteriology.

[106]  B. Iglewski,et al.  Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene , 1988, Journal of bacteriology.

[107]  Iosr Journals,et al.  Susceptibility Pattern of Bacterial Isolates from Catheterised Patients in a Referral Hospital , 2014 .

[108]  S. Minagawa,et al.  Type IV pilus protein PilA of Pseudomonas aeruginosa modulates calcium signaling through binding the calcium-modulating cyclophilin ligand , 2013, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[109]  Tetsuro Kato,et al.  Clinical characteristics and risk factors for mortality in patients with bacteremia caused by Pseudomonas aeruginosa. , 2012, Internal medicine.

[110]  Sudhir Aggarwal,et al.  Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. , 2009, Journal of infection and public health.

[111]  K. Wolska,et al.  Genetic features of clinical Pseudomonas aeruginosa strains. , 2009, Polish journal of microbiology.

[112]  A. Dashti,et al.  Heat Treatment of Bacteria: A Simple Method of DNA Extraction for Molecular Techniques , 2009 .