Implementation of a restarted Krylov subspace method for the evaluation of matrix functions

[1]  ANDREAS FROMMER,et al.  Stopping Criteria for Rational Matrix Functions of Hermitian and Symmetric Matrices , 2008, SIAM J. Sci. Comput..

[2]  Stefan Güttel,et al.  A generalization of the steepest descent method for matrix functions , 2008 .

[3]  Gene H. Golub,et al.  Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.

[4]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[5]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[6]  Valeria Simoncini,et al.  Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential , 2006, SIAM J. Numer. Anal..

[7]  Nicholas J. Higham,et al.  The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[8]  Michiel E. Hochstenbach,et al.  Subspace extraction for matrix functions , 2005 .

[9]  Gerard L. G. Sleijpen,et al.  Accurate conjugate gradient methods for families of shifted systems , 2004 .

[10]  Gerard L. G. Sleijpen,et al.  Accurate conjugate gradient methods for shifted systems , 2003 .

[11]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[12]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[13]  B. Jegerlehner Krylov space solvers for shifted linear systems , 1996, hep-lat/9612014.

[14]  B. Philippe,et al.  Transient Solutions of Markov Processes by Krylov Subspaces , 1995 .

[15]  L. Knizhnerman,et al.  Spectral approach to solving three-dimensional Maxwell's diffusion equations in the time and frequency domains , 1994 .

[16]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[17]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[18]  L. Trefethen,et al.  Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .

[19]  L. Knizhnerman,et al.  Two polynomial methods of calculating functions of symmetric matrices , 1991 .

[20]  Misac N. Nabighian,et al.  Electromagnetic Methods in Applied Geophysics , 1988 .

[21]  G. W. Hohmann,et al.  4. Electromagnetic Theory for Geophysical Applications , 1987 .

[22]  R. Varga,et al.  Rational Approximation and Interpolation , 1985 .

[23]  R. Varga,et al.  Extended numerical computations on the “1/9” conjecture in rational approximation theory , 1984 .

[24]  A. G. Hutton,et al.  THE NUMERICAL TREATMENT OF ADVECTION: A PERFORMANCE COMPARISON OF CURRENT METHODS , 1982 .

[25]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[26]  B. Parlett A recurrence among the elements of functions of triangular matrices , 1976 .

[27]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[28]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[29]  R. Varga On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations , 1961 .

[30]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .