The Linfty-Voronoi Diagram of Segments and VLSI Applications

In this paper we address the L∞ Voronoi diagram of polygonal objects and present application in VLSI layout and manufacturing. We show that L∞ Voronoi diagram of polygonal objects consists of straight line segments and thus it is much simpler to compute than its Euclidean counterpart; the degree of the computation is significantly lower. Moreover, it has a natural interpretation. In applications where Euclidean precision is not essential the L∞ Voronoi diagram can provide a better alternative. Using the L∞ Voronoi diagram of polygons we address the problem of calculating the critical area for shorts in a VLSI layout. The critical area computation is the main computational bottleneck in VLSI yield prediction.

[1]  D. Coppersmith,et al.  An elementary proof of nonexistence of isometries between l p k and l q k , 1979 .

[2]  Rolf Klein,et al.  "The Big Sweep": On the Power of the Wavefront Approach to Voronoi Diagrams , 1994, MFCS.

[3]  Christoph Burnikel,et al.  Exact computation of Voronoi diagrams and line segment intersections , 1996 .

[4]  Giuseppe Liotta,et al.  Robust Proximity Queries: An Illustration of Degree-Driven Algorithm Design , 1998, SIAM J. Comput..

[5]  J. Pineda de Gyvez,et al.  IC defect sensitivity for footprint-type spot defects , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  D. T. Lee,et al.  Critical area computation via Voronoi diagrams , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[8]  Israel A. Wagner,et al.  An interactive VLSI CAD tool for yield estimation , 1995 .

[9]  Steven Fortune,et al.  Numerical stability of algorithms for 2-d Delaunay triangulations , 1995, Int. J. Comput. Geom. Appl..

[10]  Wojciech Maly,et al.  Yield estimation model for VLSI artwork evaluation , 1983 .

[11]  I. Koren The Effect of Scaling on the Yield of VLSI Circuits , 1988 .

[12]  A. V. Ferris-Prabhu,et al.  Defect size variations and their effect on the critical area of VLSI devices , 1985 .

[13]  A. V. Ferris-Prabhu,et al.  Modeling the critical area in yield forecasts , 1985 .

[14]  Franz Aurenhammer,et al.  Straight Skeletons for General Polygonal Figures in the Plane , 1996, COCOON.

[15]  Vijay Srinivasan,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..

[16]  Charles H. Stapper,et al.  Modeling of Defects in Integrated Circuit Photolithographic Patterns , 1984, IBM J. Res. Dev..

[17]  L. Nackman,et al.  Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.

[18]  C. H. Stapper,et al.  Integrated circuit yield management and yield analysis: development and implementation" ieee trans , 1995 .

[19]  Siavash N. Meshkat,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains II: Implementation and Application , 1987, IBM J. Res. Dev..