Splice2Deep: An ensemble of deep convolutional neural networks for improved splice site prediction in genomic DNA

[1]  Fahad Albalawi,et al.  Hybrid model for efficient prediction of poly(A) signals in human genomic DNA. , 2019, Methods.

[2]  David G. Knowles,et al.  Predicting Splicing from Primary Sequence with Deep Learning , 2019, Cell.

[3]  Giulia Antonazzo,et al.  FlyBase 2.0: the next generation , 2018, Nucleic Acids Res..

[4]  Vladimir B. Bajic,et al.  DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions , 2018, Bioinform..

[5]  Jinze Liu,et al.  Discerning novel splice junctions derived from RNA-seq alignment: a deep learning approach , 2018, BMC Genomics.

[6]  B. Guldbrandtsen,et al.  A splice donor variant in CCDC189 is associated with asthenospermia in Nordic Red dairy cattle , 2018, BMC Genomics.

[7]  Wesley De Neve,et al.  SpliceRover: interpretable convolutional neural networks for improved splice site prediction , 2018, Bioinform..

[8]  Yu Yao,et al.  DeepSS: Exploring Splice Site Motif Through Convolutional Neural Network Directly From DNA Sequence , 2018, IEEE Access.

[9]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[10]  Kimberly Van Auken,et al.  WormBase 2017: molting into a new stage , 2017, Nucleic Acids Res..

[11]  Vladimir B. Bajic,et al.  DANNP: an efficient artificial neural network pruning tool , 2017, PeerJ Comput. Sci..

[12]  Wenjun Li,et al.  Prediction of Splice Site using Support Vector Machine with Feature Selection , 2017, ICBCI 2017.

[13]  V. Bajic,et al.  Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA , 2017, BMC Genomics.

[14]  Arturo Magana-Mora,et al.  OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models , 2017, Scientific Reports.

[15]  Yi Zhang,et al.  DeepSplice: Deep classification of novel splice junctions revealed by RNA-seq , 2016, 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[16]  Dwarfism with joint laxity in Friesian horses is associated with a splice site mutation in B4GALT7 , 2016, BMC Genomics.

[17]  이창기,et al.  Convolutional Neural Network를 이용한 한국어 영화평 감성 분석 , 2016 .

[18]  David K. Gifford,et al.  Convolutional neural network architectures for predicting DNA–protein binding , 2016, Bioinform..

[19]  Prabina Kumar Meher,et al.  Identification of donor splice sites using support vector machine: a computational approach based on positional, compositional and dependency features , 2016, Algorithms for Molecular Biology.

[20]  Kenji Satou,et al.  DNA Sequence Classification by Convolutional Neural Network , 2016 .

[21]  F. Thibaud-Nissen,et al.  Araport11: a complete reannotation of the Arabidopsis thaliana reference genome , 2016, bioRxiv.

[22]  Aleksandr B. Sahakyan,et al.  Long genes and genes with multiple splice variants are enriched in pathways linked to cancer and other multigenic diseases , 2016, BMC Genomics.

[23]  Prabina Kumar Meher,et al.  Prediction of donor splice sites using random forest with a new sequence encoding approach , 2016, BioData Mining.

[24]  Xiaohui S. Xie,et al.  DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences , 2015, bioRxiv.

[25]  B. Frey,et al.  Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning , 2015, Nature Biotechnology.

[26]  Sungroh Yoon,et al.  Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions , 2015, ICML.

[27]  Ole Winther,et al.  Convolutional LSTM Networks for Subcellular Localization of Proteins , 2015, AlCoB.

[28]  Neelam Goel,et al.  An Improved Method for Splice Site Prediction in DNA Sequences Using Support Vector Machines , 2015 .

[29]  Prabina Kumar Meher,et al.  A statistical approach for 5′ splice site prediction using short sequence motifs and without encoding sequence data , 2014, BMC Bioinformatics.

[30]  K. De Jong,et al.  Effective Automated Feature Construction and Selection for Classification of Biological Sequences , 2014, PloS one.

[31]  Brendan J. Frey,et al.  Deep learning of the tissue-regulated splicing code , 2014, Bioinform..

[32]  Byeong-Soo Jeong,et al.  Effective DNA Encoding for Splice Site Prediction Using SVM , 2014 .

[33]  Qingshan Jiang,et al.  A novel splice site prediction method using support vector machine , 2013 .

[34]  L. Harries,et al.  The splice site variant rs11078928 may be associated with a genotype-dependent alteration in expression of GSDMB transcripts , 2013, BMC Genomics.

[35]  Le Song,et al.  Poly(A) motif prediction using spectral latent features from human DNA sequences , 2013, Bioinform..

[36]  Vladimir B. Bajic,et al.  Bioinformatics Applications Note Sequence Analysis Dragon Polya Spotter: Predictor of Poly(a) Motifs within Human Genomic Dna Sequences , 2022 .

[37]  Yoshihiro Kawahara,et al.  Rice Annotation Project Database (RAP-DB): An Integrative and Interactive Database for Rice Genomics , 2013, Plant & cell physiology.

[38]  Vladimir B. Bajic,et al.  Dragon TIS Spotter: an Arabidopsis-derived predictor of translation initiation sites in plants , 2012, Bioinform..

[39]  Pascal Vincent,et al.  Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives , 2012, ArXiv.

[40]  Shannon L. Risacher,et al.  Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning , 2012, Bioinform..

[41]  Vladimir B. Bajic,et al.  Dragon PolyA Spotter: predictor of poly(A) motifs within human genomic DNA sequences , 2011, Bioinform..

[42]  Vladimir B. Bajic,et al.  Recognition of Translation Initiation Sites in Arabidopsis Thaliana , 2012 .

[43]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[44]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[45]  Jing Li,et al.  Splice sites prediction of Human genome using length-variable Markov model and feature selection , 2010, Expert Syst. Appl..

[46]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[47]  L. Florea,et al.  A method for identifying alternative or cryptic donor splice sites within gene and mRNA sequences. Comparisons among sequences from vertebrates, echinoderms and other groups , 2009, BMC Genomics.

[48]  M. Gelfand,et al.  Computational analysis of splicing errors and mutations in human transcripts , 2008, BMC Genomics.

[49]  Gunnar Rätsch,et al.  Accurate splice site prediction using support vector machines , 2007, BMC Bioinformatics.

[50]  Heitor Silvério Lopes,et al.  A Configware Approach for High-Speed Parallel Analysis of genomic Data , 2007, J. Circuits Syst. Comput..

[51]  Jason Li,et al.  Splice site identification using probabilistic parameters and SVM classification , 2006, BMC Bioinformatics.

[52]  J. Huang,et al.  An approach of encoding for prediction of splice sites using SVM. , 2006, Biochimie.

[53]  Chih-Jen Lin,et al.  Combining SVMs with Various Feature Selection Strategies , 2006, Feature Extraction.

[54]  Yvan Saeys,et al.  SpliceMachine: predicting splice sites from high-dimensional local context representations , 2005, Bioinform..

[55]  Ron Shamir,et al.  Accurate identification of alternatively spliced exons using support vector machine , 2005, Bioinform..

[56]  Wei Zhu,et al.  Gene structure prediction from consensus spliced alignment of multiple ESTs matching the same genomic locus , 2004, Bioinform..

[57]  H. Ruley,et al.  Gene trap mutagenesis of hnRNP A2/B1: a cryptic 3' splice site in the neomycin resistance gene allows continued expression of the disrupted cellular gene , 2003, BMC Genomics.

[58]  S. Salzberg,et al.  GeneSplicer: a new computational method for splice site prediction. , 2001, Nucleic acids research.

[59]  V. Solovyev,et al.  Analysis of canonical and non-canonical splice sites in mammalian genomes. , 2000, Nucleic acids research.

[60]  Bruce Draper,et al.  Feature selection from huge feature sets in the context of computer vision , 2000 .

[61]  M Tomita,et al.  Introns and reading frames: correlation between splicing sites and their codon positions. , 1996, Molecular biology and evolution.