Comparing extraction method efficiency for high-throughput palaeoproteomic bone species identification

[1]  M. Mackie,et al.  Tryps-IN: A streamlined palaeoproteomics workflow enables ZooMS analysis of 10,000-year-old petrous bones from Jordan rift-valley , 2023, Journal of Archaeological Science: Reports.

[2]  J. Hublin,et al.  Neanderthal subsistence, taphonomy and chronology at Salzgitter‐Lebenstedt (Germany): a multifaceted analysis of morphologically unidentifiable bone , 2023, Journal of Quaternary Science.

[3]  Xianyan Wang,et al.  Identification of cetaceans from bones using molecular techniques provides insights into cetacean species diversity and composition in coastal western Taiwan Strait waters, China , 2022, Conservation Genetics Resources.

[4]  N. Bicho,et al.  The sediment at the end of the tunnel: Geophysical research to locate the Pleistocene entrance of Gruta da Companheira (Algarve, Southern Portugal) , 2022, Archaeological Prospection.

[5]  J. Hublin,et al.  The Late Middle Palaeolithic Occupation of Abri du Maras (Layer 1, Neronian, Southeast France): Integrating Lithic Analyses, ZooMS and Radiocarbon Dating to Reconstruct Neanderthal Hunting Behaviour , 2022, Journal of Paleolithic Archaeology.

[6]  L. Orlando,et al.  Ancient DNA refines taxonomic classification of Roman equids north of the Alps, elaborated with osteomorphology and geometric morphometrics , 2022, Journal of Archaeological Science.

[7]  T. Sicheritz-Pontén,et al.  Ancient proteins resolve controversy over the identity of Genyornis eggshell , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Hublin,et al.  Initial Upper Paleolithic bone technology and personal ornaments at Bacho Kiro Cave (Bulgaria). , 2022, Journal of human evolution.

[9]  J. Olsen,et al.  SPIN enables high throughput species identification of archaeological bone by proteomics , 2022, Nature Communications.

[10]  J. Hublin,et al.  A 41,500 year-old decorated ivory pendant from Stajnia Cave (Poland) , 2021, Scientific Reports.

[11]  N. Boivin,et al.  Iron Age hunting and herding in coastal eastern Africa: ZooMS identification of domesticates and wild bovids at Panga ya Saidi, Kenya , 2021, Journal of Archaeological Science.

[12]  M. Collins,et al.  Assessing the degradation of ancient milk proteins through site-specific deamidation patterns , 2021, Scientific Reports.

[13]  J. Bradfield,et al.  Selection preferences for animal species used in bone-tool-manufacturing strategies in KwaZulu-Natal, South Africa , 2021, PloS one.

[14]  J. Hendy,et al.  Ancient protein analysis in archaeology , 2021, Science Advances.

[15]  P. Manning,et al.  Collagen Sequence Analysis Reveals Evolutionary History of Extinct West Indies Nesophontes (Island-Shrews) , 2020, Molecular biology and evolution.

[16]  M. Soressi,et al.  Non-destructive ZooMS identification reveals strategic bone tool raw material selection by Neandertals , 2020, Scientific Reports.

[17]  M. Meyer,et al.  Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria , 2020, Nature.

[18]  Fernando Racimo,et al.  The dental proteome of Homo antecessor , 2020, Nature.

[19]  M. Collins,et al.  DeamiDATE 1.0: Site-specific deamidation as a tool to assess authenticity of members of ancient proteomes , 2020, Journal of Archaeological Science.

[20]  J. Rappsilber,et al.  Proteomics Using Protease Alternatives to Trypsin Benefits from Sequential Digestion with Trypsin , 2020, bioRxiv.

[21]  M. Buckley,et al.  Archaeozoological, taphonomic and ZooMS insights into The Protoaurignacian faunal record from Riparo Bombrini , 2020 .

[22]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[23]  M. Buckley,et al.  Preserved collagen reveals species identity in archaeological marine turtle bones from Caribbean and Florida sites , 2019, Royal Society Open Science.

[24]  J. Hublin,et al.  Combining ZooMS and zooarchaeology to study Late Pleistocene hominin behaviour at Fumane (Italy) , 2019, Scientific Reports.

[25]  M. Collins,et al.  Identifying Archaeological Bone via Non-Destructive ZooMS and the Materiality of Symbolic Expression: Examples from Iroquoian Bone Points , 2019, Scientific Reports.

[26]  S. Zirah,et al.  Identification of degraded bone and tooth splinters from arid environments using palaeoproteomics , 2018, Palaeogeography, Palaeoclimatology, Palaeoecology.

[27]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[28]  A. Krogh,et al.  Early Pleistocene enamel proteome sequences from Dmanisi resolve Stephanorhinus phylogeny , 2018, Nature.

[29]  L. Jensen,et al.  Palaeoproteomic Profiling of Conservation Layers on a 14th Century Italian Wall Painting , 2018, Angewandte Chemie.

[30]  T. Cleland Solid Digestion of Demineralized Bone as a Method To Access Potentially Insoluble Proteins and Post-Translational Modifications. , 2018, Journal of proteome research.

[31]  Karina D. Sørensen,et al.  An Optimized Shotgun Strategy for the Rapid Generation of Comprehensive Human Proteomes , 2017, Cell systems.

[32]  J. Olsen,et al.  Proteomic profiling of archaeological human bone , 2017, Royal Society Open Science.

[33]  Sabine Gaudzinski-Windheuser,et al.  Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae , 2017, PeerJ.

[34]  N. Kelleher,et al.  Bone protein “extractomics”: comparing the efficiency of bone protein extractions of Gallus gallus in tandem mass spectrometry, with an eye towards paleoproteomics , 2016, PeerJ.

[35]  Michael Buckley,et al.  Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis , 2016, Scientific Reports.

[36]  M. Buckley,et al.  Correction: Collagen Sequence Analysis of the Extinct Giant Ground Sloths Lestodon and Megatherium , 2015, PloS one.

[37]  Samuel T. Turvey,et al.  Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates , 2015, Nature.

[38]  Matthias Mann,et al.  Visualization of LC‐MS/MS proteomics data in MaxQuant , 2015, Proteomics.

[39]  J. Hublin,et al.  Using ZooMS to identify fragmentary bone from the Late Middle/Early Upper Palaeolithic sequence of Les Cottés, France , 2015 .

[40]  Jeroen Krijgsveld,et al.  Ultrasensitive proteome analysis using paramagnetic bead technology , 2014, Molecular systems biology.

[41]  Philip L. F. Johnson,et al.  Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse , 2013, Nature.

[42]  Johannes P C Vissers,et al.  Using ion purity scores for enhancing quantitative accuracy and precision in complex proteomics samples , 2012, Analytical and Bioanalytical Chemistry.

[43]  Damian Szklarczyk,et al.  Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. , 2012, Journal of proteome research.

[44]  H. Hollund,et al.  A novel and non-destructive approach for ZooMS analysis: ammonium bicarbonate buffer extraction , 2011 .

[45]  M. Mann,et al.  Proteomics on an Orbitrap Benchtop Mass Spectrometer Using All-ion Fragmentation , 2010, Molecular & Cellular Proteomics.

[46]  Michael Buckley,et al.  Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. , 2009, Rapid communications in mass spectrometry : RCM.

[47]  L. Cantley,et al.  Biomolecular Characterization and Protein Sequences of the Campanian Hadrosaur B. canadensis , 2009, Science.

[48]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[49]  Hadley Wickham,et al.  Reshaping Data with the reshape Package , 2007 .

[50]  N. Robinson,et al.  Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides. , 2004, The journal of peptide research : official journal of the American Peptide Society.

[51]  Andrew R. Millard,et al.  The survival of organic matter in bone: a review , 2002 .

[52]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[53]  S. Pääbo,et al.  Supplementary information to : Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne , 2016 .