The power spectrum and bispectrum of SDSS DR11 BOSS galaxies – I. Bias and gravity

We analyse the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS Data Release 11 sample, which consists of $690 827$ galaxies in the redshift range 0.43 < z < 0.70 and has a sky coverage of 8498 deg2 corresponding to an effective volume of ˜ 6 Gpc3. We fit the Fourier space statistics, the power spectrum and bispectrum monopoles to measure the linear and quadratic bias parameters, b1 and b2, for a non-linear non-local bias model, the growth of structure parameter f and the amplitude of dark matter density fluctuations parametrized by sigma8. We obtain b1(zeff)1.40sigma8(zeff) = 1.672 ± 0.060 and b_2^{0.30}(z_eff)sigma _8(z_eff)=0.579± 0.082 at the effective redshift of the survey, zeff = 0.57. The main cosmological result is the constraint on the combination f 0.43(zeff)sigma8(zeff) = 0.582 ± 0.084, which is complementary to fsigma8 constraints obtained from two-point redshift-space distortion analyses. A less conservative analysis yields f 0.43(zeff)sigma8(zeff) = 0.584 ± 0.051. We ensure that our result is robust by performing detailed systematic tests using a large suite of survey galaxy mock catalogues and N-body simulations. The constraints on f 0.43sigma8 are useful for setting additional constraints on neutrino mass, gravity, curvature as well as the number of neutrino species from galaxy surveys analyses (as presented in a companion paper).

[1]  W. Percival,et al.  Dark matter and halo bispectrum in redshift space: theory and applications , 2014, 1407.1836.

[2]  Ashley J. Ross,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.

[3]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering , 2013, 1312.4899.

[4]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples , 2013, 1312.4854.

[5]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure , 2013, 1309.5556.

[6]  J. Pollack,et al.  A new method to measure galaxy bias , 2013, 1309.0504.

[7]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[8]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: constraining galaxy bias and cosmic growth with three-point correlation functions , 2013, 1303.6644.

[9]  Jon Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements and the strong power of f(z)σ8(z) on constraining dark energy , 2013, 1303.4486.

[10]  A. Heavens,et al.  Multi-variate joint PDF for non-Gaussianities: exact formulation and generic approximations , 2013, 1301.6017.

[11]  L. Verde,et al.  Perturbation theory approach for the power spectrum: from dark matter in real space to massive haloes in redshift space , 2012, 1209.3771.

[12]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[13]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: constraints on primordial non-Gaussianity , 2012, 1208.1491.

[14]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[15]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[16]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[17]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[18]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[19]  P. Mcdonald,et al.  Evidence for quadratic tidal tensor bias from the halo bispectrum , 2012, 1201.4827.

[20]  R. Sheth,et al.  Gravity and Large-Scale Nonlocal Bias , 2012, 1201.3614.

[21]  L. Verde,et al.  An improved fitting formula for the dark matter bispectrum , 2011, 1111.4477.

[22]  L. Verde,et al.  The bispectrum of f(R) cosmologies , 2011, 1109.2115.

[23]  A. Taruya,et al.  Baryon Acoustic Oscillations in 2D II: Redshift-space halo clustering in N-body simulations , 2011, 1106.4562.

[24]  F. Marin THE LARGE-SCALE THREE-POINT CORRELATION FUNCTION OF SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXIES , 2010, 1011.4530.

[25]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[26]  S. Saito,et al.  Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.

[27]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[28]  M. Manera,et al.  The local bias model in the large-scale halo distribution , 2009, 0912.0446.

[29]  Patrick McDonald,et al.  Clustering of dark matter tracers: generalizing bias for the coming era of precision LSS , 2009, 0902.0991.

[30]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[31]  T. Matsubara Statistics of Fourier Modes in Non-Gaussian Fields , 2006, astro-ph/0610536.

[32]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[33]  M. Crocce,et al.  Renormalized cosmological perturbation theory , 2005, astro-ph/0509418.

[34]  B. Bassett,et al.  A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2005, astro-ph/0505115.

[35]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[36]  E. Gaztañaga,et al.  The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.

[37]  F. V. D. Bosch,et al.  The three-point correlation function of galaxies: comparing halo occupation models with observations , 2004, astro-ph/0404143.

[38]  Y. Jing,et al.  The Three-Point Correlation Function of Galaxies Determined from the Two-Degree Field Galaxy Redshift Survey , 2003, astro-ph/0311585.

[39]  W. Percival,et al.  Fourier analysis of luminosity-dependent galaxy clustering , 2003, astro-ph/0306511.

[40]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[41]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[42]  O. Lahav,et al.  The 2dF Galaxy Redshift Survey: The bias of galaxies and the density of the Universe , 2001, astro-ph/0112161.

[43]  Fermilab,et al.  On the distribution of haloes, galaxies and mass , 2001, astro-ph/0105008.

[44]  J. Frieman,et al.  The Bispectrum of IRAS Redshift Catalogs , 2001 .

[45]  J. Frieman,et al.  Constraints on galaxy bias, matter density, and primordial non-Gaussianity from the PSCz galaxy redshift survey. , 2000, Physical review letters.

[46]  H. Couchman,et al.  A fitting formula for the non‐linear evolution of the bispectrum , 2000, astro-ph/0009427.

[47]  R. Scoccimarro The Bispectrum: From Theory to Observations , 2000, astro-ph/0004086.

[48]  S. Maddox,et al.  The PSCz catalogue , 1999, astro-ph/9909191.

[49]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[50]  Joshua A. Frieman,et al.  The Bispectrum as a Signature of Gravitational Instability in Redshift Space , 1998, astro-ph/9808305.

[51]  A. Heavens,et al.  The non-linear redshift-space power spectrum of galaxies , 1998, astro-ph/9808016.

[52]  M. Kamionkowski,et al.  Weakly Nonlinear Clustering for Arbitrary Expansion Histories , 1998, astro-ph/9807211.

[53]  L. Moscardini,et al.  Large-scale bias in the Universe - II. Redshift-space bispectrum , 1998, Monthly Notices of the Royal Astronomical Society.

[54]  S. Matarrese,et al.  The bias field of dark matter haloes , 1997, astro-ph/9708067.

[55]  Max Tegmark Measuring Cosmological Parameters with Galaxy Surveys , 1997, astro-ph/9706198.

[56]  L. Verde,et al.  Large-scale bias in the Universe: bispectrum method , 1997, astro-ph/9706059.

[57]  J. Frieman,et al.  Nonlinear Evolution of the Bispectrum of Cosmological Perturbations , 1997, astro-ph/9704075.

[58]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[59]  P. Catelan,et al.  Eulerian perturbation theory in non-flat universes: second-order approximation , 1994, astro-ph/9411066.

[60]  Fry Gravity, bias, and the galaxy three-point correlation function. , 1994, Physical review letters.

[61]  L. Moscardini,et al.  Kurtosis as a non-Gaussian signature of the large-scale velocity field , 1994, astro-ph/9403035.

[62]  F. Bernardeau Skewness and Kurtosis in Large-Scale Cosmic Fields , 1993, astro-ph/9312026.

[63]  B. Jain,et al.  Second-Order Power Spectrum and Nonlinear Evolution at High Redshift , 1993, astro-ph/9311070.

[64]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[65]  L. Moscardini,et al.  KURTOSIS AND LARGE-SCALE STRUCTURE , 1993, astro-ph/9308002.

[66]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[67]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[68]  Sasaki,et al.  Analytic approach to the perturbative expansion of nonlinear gravitational fluctuations in cosmological density and velocity fields. , 1992, Physical review. D, Particles and fields.

[69]  S. Colombi,et al.  Weakly nonlinear gravitational instability for arbitrary Omega , 1992 .

[70]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[71]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[72]  S. Rey,et al.  Coupling of Modes of Cosmological Mass Density Fluctuations , 1986 .

[73]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[74]  J. Fry,et al.  The Galaxy correlation hierarchy in perturbation theory , 1984 .

[75]  J. Fry,et al.  Transform analysis of the high-resolution Shane-Wirtanen catalog: The power spectrum and the bispectrum , 1982 .

[76]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[77]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. V. Three-point correlation function for the galaxy distribution in the Zwicky catalog. , 1975 .

[78]  William H. Press,et al.  Numerical recipes in C , 2002 .