Nucleosomes and the accessibility problem.

[1]  J. Carroll,et al.  Pioneer transcription factors: establishing competence for gene expression. , 2011, Genes & development.

[2]  Zhenhai Zhang,et al.  A Packing Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome , 2011, Science.

[3]  F. Cross,et al.  Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. , 2011, Molecular cell.

[4]  X. Wang,et al.  An effect of DNA sequence on nucleosome occupancy and removal , 2011, Nature Structural &Molecular Biology.

[5]  B. Franklin Pugh,et al.  High-Resolution Genome-wide Mapping of the Primary Structure of Chromatin , 2011, Cell.

[6]  Nicholas A. Kent,et al.  Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation DNA sequencing , 2010, Nucleic acids research.

[7]  Martin Vingron,et al.  The Effect of Micrococcal Nuclease Digestion on Nucleosome Positioning Data , 2010, PloS one.

[8]  Alexandre V Morozov,et al.  Gene regulation by nucleosome positioning. , 2010, Trends in genetics : TIG.

[9]  Xin Wang,et al.  A RSC/Nucleosome Complex Determines Chromatin Architecture and Facilitates Activator Binding , 2010, Cell.

[10]  F. Cross,et al.  Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. , 2010, Developmental cell.

[11]  K. Struhl,et al.  High-throughput sequencing reveals a simple model of nucleosome energetics , 2010, Proceedings of the National Academy of Sciences.

[12]  Taichi E. Takasuka,et al.  Are nucleosome positions in vivo primarily determined by histone–DNA sequence preferences? , 2009, Nucleic acids research.

[13]  L. Mirny,et al.  Nucleosome-mediated cooperativity between transcription factors , 2009, Proceedings of the National Academy of Sciences.

[14]  R. Mann,et al.  The role of DNA shape in protein-DNA recognition , 2009, Nature.

[15]  E. Segal,et al.  What controls nucleosome positions? , 2009, Trends in genetics : TIG.

[16]  K. Struhl,et al.  Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo , 2009, Nature Structural &Molecular Biology.

[17]  Howard Y. Chang,et al.  Genome-wide views of chromatin structure. , 2009, Annual review of biochemistry.

[18]  M. Ptashne Binding reactions: epigenetic switches, signal transduction and cancer , 2009, Current Biology.

[19]  Irene K. Moore,et al.  The DNA-encoded nucleosome organization of a eukaryotic genome , 2009, Nature.

[20]  Cizhong Jiang,et al.  Nucleosome positioning and gene regulation: advances through genomics , 2009, Nature Reviews Genetics.

[21]  X. Wang,et al.  Activator Control of Nucleosome Occupancy in Activation and Repression of Transcription , 2008, PLoS biology.

[22]  Michael J. Parsons,et al.  Gal4/UAS transgenic tools and their application to zebrafish. , 2008, Zebrafish.

[23]  D. S. Gross,et al.  Sir2 Silences Gene Transcription by Targeting the Transition between RNA Polymerase II Initiation and Elongation , 2008, Molecular and Cellular Biology.

[24]  Oliver J. Rando,et al.  Chromatin remodelling at promoters suppresses antisense transcription , 2007, Nature.

[25]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[26]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[27]  B. Cairns,et al.  The RSC Chromatin Remodeling Complex Bears an Essential Fungal-Specific Protein Module With Broad Functional Roles , 2006, Genetics.

[28]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[29]  Kevin Struhl,et al.  Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. , 2005, Molecular cell.

[30]  J. Widom,et al.  Mechanism of Transcriptional Silencing in Yeast , 2005, Cell.

[31]  C. Verrijzer,et al.  Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. , 2005, Biochimica et biophysica acta.

[32]  T. Luckenbach,et al.  Evidence for Histone Eviction in trans upon Induction of the Yeast PHO5 Promoter , 2004, Molecular and Cellular Biology.

[33]  L. Gaudreau,et al.  Targeting of Swi/Snf to the yeast GAL1 UASG requires the Mediator, TAFIIs, and RNA polymerase II , 2004, The EMBO journal.

[34]  S. Schreiber,et al.  Global nucleosome occupancy in yeast , 2004, Genome Biology.

[35]  Philipp Korber,et al.  In Vitro Assembly of the Characteristic Chromatin Organization at the Yeast PHO5 Promoter by a Replication-independent Extract System* , 2004, Journal of Biological Chemistry.

[36]  David Landsman,et al.  High-resolution genome-wide mapping of histone modifications , 2004, Nature Biotechnology.

[37]  Mark Ptashne,et al.  A Genetic Switch, Phage Lambda Revisited , 2004 .

[38]  J. Workman,et al.  Transcription Activator Interactions with Multiple SWI/SNF Subunits , 2002, Molecular and Cellular Biology.

[39]  M. Ptashne,et al.  Genes and Signals , 2001 .

[40]  J. Widom,et al.  Role of DNA sequence in nucleosome stability and dynamics , 2001, Quarterly Reviews of Biophysics.

[41]  E. Sekinger,et al.  Silenced Chromatin Is Permissive to Activator Binding and PIC Recruitment , 2001, Cell.

[42]  B. Cairns,et al.  A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. , 2001, Molecular cell.

[43]  Steven Henikoff,et al.  Modulation of a Transcription Factor Counteracts Heterochromatic Gene Silencing in Drosophila , 2001, Cell.

[44]  N. Patel,et al.  Evidence for stabilizing selection in a eukaryotic enhancer element , 2000, Nature.

[45]  K. Struhl Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes , 1999, Cell.

[46]  J. Widom,et al.  Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. , 1999, Journal of molecular biology.

[47]  J. Reinitz,et al.  Transcriptional repression by the Drosophila giant protein: cis element positioning provides an alternative means of interpreting an effector gradient. , 1999, Development.

[48]  K Nasmyth,et al.  Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at start, whereas Clb/Cdc28 kinases displace it from the promoter in G2. , 1996, Genes & development.

[49]  M. Levine,et al.  The eve stripe 2 enhancer employs multiple modes of transcriptional synergy. , 1996, Development.

[50]  C. Wittenberg,et al.  Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements , 1994, Molecular and cellular biology.

[51]  F. Cross,et al.  Role of Swi4 in cell cycle regulation of CLN2 expression , 1994, Molecular and cellular biology.

[52]  M. Levine,et al.  Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. , 1991, Science.

[53]  M. Beato,et al.  Nucleosome positioning and regulated gene expression. , 1991, Oxford surveys on eukaryotic genes.

[54]  D. Lohr,et al.  The yeast GAL1-10 UAS region readily accepts nucleosomes in vitro. , 1989, Biochemistry.

[55]  A. Klug,et al.  The bending of DNA in nucleosomes and its wider implications. , 1987, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  H. Drew,et al.  Sequence periodicities in chicken nucleosome core DNA. , 1986, Journal of molecular biology.

[57]  R. Kornberg The location of nucleosomes in chromatin: specific or statistical? , 1981, Nature.

[58]  E. Trifonov,et al.  Sequence-dependent deformational anisotropy of chromatin DNA. , 1980, Nucleic acids research.

[59]  M. Noll Subunit structure of chromatin , 1974, Nature.

[60]  M. Ptashne Specific binding of the lambda phage repressor to lambda DNA. , 1967, Nature.