Automatic Hysteresis Modeling of Piezoelectric Micromanipulator in Vision-Guided Micromanipulation Systems

Conventional hysteresis modeling of piezoelectric actuators using interferometers or capacitive sensors is often performed off-line. However, the hysteresis of the piezoelectric actuator changes as the load acting on it or the driving frequency of the input signal alters, demanding that the hysteresis of the micromanipulator be modeled on the fly. The employment of interferometers or capacitive sensors is a challenging task in micromanipulation systems due to their special requirements, e.g., the micropipette tip is desired to provide mirror-like reflection of the incoming beam if an interferometer is employed while a capacitive sensor might not be easily placed in the workspace. An automatic Prandtl-Ishlinskii hysteresis modeling method is proposed and implemented using vision-feedback. The method can be conducted on the fly in real time making it suitable for time critical vision-guided micromanipulation, while providing comparable accuracy with that of using interferometers.

[1]  Bijan Shirinzadeh,et al.  Sliding-Mode Enhanced Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation , 2008, IEEE Transactions on Control Systems Technology.

[2]  Pavel Krejcí,et al.  An Adaptive Gradient Law with Projection for Non-smooth Convex Boundaries , 2006, Eur. J. Control.

[3]  S. Bashash,et al.  Robust Adaptive Control of Coupled Parallel Piezo-Flexural Nanopositioning Stages , 2009, IEEE/ASME Transactions on Mechatronics.

[4]  U-Xuan Tan,et al.  Feedforward Controller of Ill-Conditioned Hysteresis Using Singularity-Free Prandtl–Ishlinskii Model , 2009, IEEE/ASME Transactions on Mechatronics.

[5]  Faa-Jeng Lin,et al.  Adaptive tracking control solely using displacement feedback for a piezo-positioning mechanism , 2004 .

[6]  Hartmut Janocha,et al.  Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .

[7]  R. Ben Mrad,et al.  On the classical Preisach model for hysteresis in piezoceramic actuators , 2003 .

[8]  Craig L. Hom,et al.  Domain Wall Theory for Ferroelectric Hysteresis , 1999 .

[9]  J. Yi,et al.  Disturbance-Observer-Based Hysteresis Compensation for Piezoelectric Actuators , 2009, IEEE/ASME Transactions on Mechatronics.

[10]  K. Kuhnen,et al.  Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems , 2001 .

[11]  Nagi G. Naganathan,et al.  Preisach modeling of hysteresis for piezoceramic actuator system , 2002 .

[12]  W.J. Zhang,et al.  A New Approach to Modeling System Dynamics—In the Case of a Piezoelectric Actuator With a Host System , 2010, IEEE/ASME Transactions on Mechatronics.

[13]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[14]  A. Levchenko,et al.  Microengineered platforms for cell mechanobiology. , 2009, Annual review of biomedical engineering.

[15]  Robert J. Veillette,et al.  A charge controller for linear operation of a piezoelectric stack actuator , 2005, IEEE Transactions on Control Systems Technology.

[16]  Bin Yao,et al.  Adaptive Robust Precision Motion Control of a Piezoelectric Positioning Stage , 2008, IEEE Transactions on Control Systems Technology.

[17]  Hwee Choo Liaw,et al.  Neural Network Motion Tracking Control of Piezo-Actuated Flexure-Based Mechanisms for Micro-/Nanomanipulation , 2009, IEEE/ASME Transactions on Mechatronics.

[18]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[19]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[20]  Jian Xin Xu,et al.  Discrete-time output integral sliding mode control for a piezo-motor driven linear motion stage , 2008, 2008 International Workshop on Variable Structure Systems.

[21]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[22]  K.K. Tan,et al.  Computer controlled piezo micromanipulation system for biomedical applications , 2001 .

[23]  Reinder Banning,et al.  Modeling piezoelectric actuators , 2000 .

[24]  Bijan Shirinzadeh,et al.  Enhanced adaptive motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation , 2008 .