Hybrid dislocation dynamics based strain hardening constitutive model

Abstract In this article, a Hybrid strain-hardening Model for slip driven plasticity is introduced. The model distinguishes between the contributions of glissile and stored dislocations, and polar and non-polar dislocations. The core idea relies on a two step-approach in which all glissile non-polar dislocations on given slip systems are represented by a virtual dislocation loop which evolution is modeled by a dislocation dynamics approach, while transformations of dislocations from glissile to stored, resulting from short-range dislocation–dislocation interactions, are based on phenomenological relations informed by dislocation dynamics simulations on dislocation pair interactions. The constitutive model developed should then allow for a reduction in fitting parameters and should be suitable to predict complex loading. Besides, the Hybrid Model is able to predict dislocation densities for all kinds of populations, including junctions. As a first application, the resulting Hybrid continuum/discrete dislocation density Model is utilized for predicting the stress–strain response of single crystal aluminum as a function of its orientation, slip activity, and junction formation.

[1]  L. Kubin,et al.  Dislocation Mean Free Paths and Strain Hardening of Crystals , 2008, Science.

[2]  Amit Acharya,et al.  A model of crystal plasticity based on the theory of continuously distributed dislocations , 2001 .

[3]  Esteban P. Busso,et al.  Discrete dislocation density modelling of single phase FCC polycrystal aggregates , 2004 .

[4]  F. Székely,et al.  Evolution of the statistical properties of dislocation ensembles , 2005 .

[5]  Nasr M. Ghoniem,et al.  Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation , 2000 .

[6]  Thierry Hoc,et al.  Toward a physical model for strain hardening in fcc crystals , 2008 .

[7]  P. Franciosi,et al.  Latent hardening in copper and aluminium single crystals , 1980 .

[8]  D. Rodney,et al.  Structure and Strength of Dislocation Junctions: An Atomic Level Analysis , 1999 .

[9]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[10]  H. Mughrabi,et al.  Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities , 1979 .

[11]  Zhiqiang Wang,et al.  A parallel algorithm for 3D dislocation dynamics , 2006, J. Comput. Phys..

[12]  D. Parks,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[13]  Dierk Raabe,et al.  Work hardening in heterogeneous alloys - A microstructural approach based on three internal state variables , 2000 .

[14]  T. Bieler,et al.  Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications , 2010 .

[15]  Thierry Hoc,et al.  Physical analyses of crystal plasticity by DD simulations , 2006 .

[16]  D Rodney,et al.  The Role of Collinear Interaction in Dislocation-Induced Hardening , 2003, Science.

[17]  T. Takeuchi Work Hardening of Copper Single Crystals with Multiple Glide Orientations , 1975 .

[18]  Esteban P. Busso,et al.  A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts , 2004 .

[19]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[21]  P. Franciosi,et al.  The concepts of latent hardening and strain hardening in metallic single crystals , 1985 .

[22]  Alan Needleman,et al.  Material rate dependence and localized deformation in crystalline solids , 1983 .

[23]  Noel P. O’Dowd,et al.  Gradient-dependent deformation of two-phase single crystals , 2000 .

[24]  Hussein M. Zbib,et al.  Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals , 1998 .

[25]  Mohammed A. Zikry,et al.  Inelastic microstructural failure modes in crystalline materials: The Σ33A and Σ11 high angle grain boundaries , 1997 .

[26]  V. R. Parameswaran,et al.  Dislocation Mobility in Aluminum , 1972 .

[27]  Alan Needleman,et al.  An analysis of nonuniform and localized deformation in ductile single crystals , 1982 .

[28]  A. Acharya,et al.  Dislocation transport using an explicit Galerkin/least-squares formulation , 2006 .

[29]  L. Kubin,et al.  Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium , 2004 .

[30]  W. Hosford,et al.  Tensile deformation of aluminum single crystals at low temperatures , 1960 .

[31]  R. Honeycombe,et al.  Plastic Deformation of Metals , 1932, Nature.

[32]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[33]  I. Beyerlein,et al.  The role of elastic anisotropy on plasticity in hcp metals: a three-dimensional dislocation dynamics study , 2010 .

[34]  V. Bulatov,et al.  Connecting atomistic and mesoscale simulations of crystal plasticity , 1998, Nature.

[35]  G. Schoeck,et al.  The Contribution of the Dislocation Forest to the Flow Stress , 1972 .

[36]  N. Thompson Dislocation Nodes in Face-Centred Cubic Lattices , 1953 .

[37]  M. Zikry,et al.  Prediction of Grain-Boundary Interfacial Mechanisms in Polycrystalline Materials , 2002 .

[38]  Athanasios Arsenlis,et al.  Modeling the evolution of crystallographic dislocation density in crystal plasticity , 2002 .

[39]  I. Beyerlein,et al.  Plastic deformation mechanisms of fcc single crystals at small scales , 2011 .

[40]  Dierk Raabe,et al.  A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations , 2006 .

[41]  L. Kubin,et al.  Scale transitions in crystal plasticity by dislocation dynamics simulations , 2010 .

[42]  Thierry Hoc,et al.  Modeling dislocation storage rates and mean free paths in face-centered cubic crystals , 2008 .

[43]  W. Püschl Reactions between glide dislocations and forest dislocations in anisotropie B.C.C. metals , 1985 .

[44]  Peter Gumbsch,et al.  Discrete dislocation simulation of plastic deformation in metal thin films , 2004 .

[45]  Vasily V. Bulatov,et al.  Dislocation stress fields for dynamic codes using anisotropic elasticity: methodology and analysis , 2001 .

[46]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[47]  Ladislas P. Kubin,et al.  On the nature of attractive dislocation crossed states , 2002 .

[48]  Z. Zhao,et al.  On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals , 2003 .

[49]  John L. Bassani,et al.  Latent hardening in single crystals. II. Analytical characterization and predictions , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[50]  D. Parks,et al.  Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density , 1999 .

[51]  Vasily V. Bulatov,et al.  Mobility laws in dislocation dynamics simulations , 2003 .

[52]  J. Weertman,et al.  Dislocation mobility in potassium and iron single crystals , 1975 .

[53]  J. Hirth On Dislocation Interactions in the fcc Lattice , 1961 .

[54]  L. Capolungo Dislocation junction formation and strength in magnesium , 2011 .

[55]  G. Saada Sur le durcissement dû à la recombinaison des dislocations , 1960 .

[56]  E. Kröner,et al.  Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen , 1953 .

[57]  I. Beyerlein,et al.  Plastic anisotropy in fcc single crystals in high rate deformation , 2009 .

[58]  Ladislas P. Kubin,et al.  Simulation of dislocation patterns in multislip , 2002 .

[59]  I. Beyerlein,et al.  Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: A multi-scale modeling study , 2011 .

[60]  L. Kubin,et al.  Dislocation Intersections and Reactions in FCC and BCC Crystals , 2003 .

[61]  Alan Cottrell,et al.  Mechanical Properties of Matter , 1964 .

[62]  James S. Stolken,et al.  Rules for Forest Interactions between Dislocations , 1999 .

[63]  H. Mecking,et al.  A new aspect of the theory of flow stress of metals , 1970 .

[64]  G. Gray,et al.  Orientation dependence of shock-induced twinning and substructures in a copper bicrystal , 2010 .

[65]  P. L. Pratt,et al.  Plastic Deformation and Work-Hardening in NaCl , 1964 .

[66]  Ronan Madec Des intersections entre dislocations à la plasticité du monocristal CFC : étude par dynamique des dislocations , 2001 .

[67]  Oliver Kraft,et al.  Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading , 2008 .

[68]  Dierk Raabe,et al.  Simulation of dislocation penetration through a general low-angle grain boundary , 2012 .

[69]  C. Schwink,et al.  On the flow stress of [100]- and [111]-oriented Cu-Mn single crystals: A transmission electron microscopy study , 1992 .

[70]  E. Busso,et al.  Cyclic deformation of monocrystalline nickel aluminide and high temperature coatings , 1990 .

[71]  Carlos N. Tomé,et al.  A dislocation-based constitutive law for pure Zr including temperature effects , 2008 .

[72]  I. Beyerlein,et al.  Role of twinning and slip during compressive deformation of beryllium as a function of strain rate , 2012 .

[73]  B. Averbach,et al.  X-ray measurements of dislocation density in deformed Copper and Aluminum single crystals , 1961 .

[74]  James R. Rice,et al.  Strain localization in ductile single crystals , 1977 .

[75]  I. Beyerlein,et al.  An atomistically-informed dislocation dynamics model for the plastic anisotropy and tension–compression asymmetry of BCC metals , 2011 .

[76]  B. Peeters,et al.  A crystal plasticity based work-hardening/softening model for b.c.c. metals under changing strain paths , 2000 .

[77]  André Zaoui,et al.  Multislip in f.c.c. crystals a theoretical approach compared with experimental data , 1982 .

[78]  Nasr M. Ghoniem,et al.  Fast-sum method for the elastic field of three-dimensional dislocation ensembles , 1999 .

[79]  Dierk Raabe,et al.  Investigation of Three-Dimensional Aspects of Grain-Scale Plastic Surface Deformation of an Aluminum Oligocrystal , 2008 .

[80]  Nasr M. Ghoniem,et al.  Affine covariant-contravariant vector forms for the elastic field of parametric dislocations in isotropic crystals , 2002 .

[81]  K. Schwarz,et al.  Dislocation interactions in thin FCC metal films , 2003 .

[82]  Dierk Raabe,et al.  On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling – Theory, experiments, and simulations , 2006 .

[83]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[84]  U. F. Kocks,et al.  Kinetics of flow and strain-hardening☆ , 1981 .

[85]  Richard Alan Lesar,et al.  The importance of cross-slip in high-rate deformation , 2007 .

[86]  J. Chaboche,et al.  Dislocations and elastic anisotropy in heteroepitaxial metallic thin films , 2003 .

[87]  D. L. Holt,et al.  The Dislocation Cell IZE AND Dislocation Density in Copper Deformed at Temperatures between 25 and 700 Degrees C. , 1972 .

[88]  I. Beyerlein,et al.  Dislocation motion in high strain-rate deformation , 2007 .

[89]  L. Kubin,et al.  Collinear interactions of dislocations and slip systems , 2005 .

[90]  Toshio Mura,et al.  Continuous distribution of moving dislocations , 1963 .