A precise architecture characterization of theπMensae planetary system

Context.The bright starπMen was chosen as the first target for a radial velocity follow-up to test the performance of ESPRESSO, the new high-resolution spectrograph at the European Southern Observatory’s Very Large Telescope. The star hosts a multi-planet system (a transiting 4M⊕planet at ~0.07 au and a sub-stellar companion on a ~2100-day eccentric orbit), which is particularly suitable for a precise multi-technique characterization.Aims.With the new ESPRESSO observations, which cover a time span of 200 days, we aim to improve the precision and accuracy of the planet parameters and search for additional low-mass companions. We also take advantage of the new photometric transits ofπMen c observed by TESS over a time span that overlaps with that of the ESPRESSO follow-up campaign.Methods.We analysed the enlarged spectroscopic and photometric datasets and compared the results to those in the literature. We further characterized the system by means of absolute astrometry with HIPPARCOSandGaia. We used the high-resolution spectra of ESPRESSO for an independent determination of the stellar fundamental parameters.Results.We present a precise characterization of the planetary system aroundπMen. The ESPRESSO radial velocities alone (37 nightly binned data with typical uncertainty of 10 cm s−1) allow for a precise retrieval of the Doppler signal induced byπMen c. The residuals show a root mean square of 1.2 m s−1, which is half that of the HARPS data; based on the residuals, we put limits on the presence of additional low-mass planets (e.g. we can exclude companions with a minimum mass less than ~2M⊕within the orbit ofπMen c). We improve the ephemeris ofπMen c using 18 additional TESS transits, and, in combination with the astrometric measurements, we determine the inclination of the orbital plane ofπMen b with high precision (ib=45.8−1.1+1.4deg). This leads to the precise measurement of its absolute massmb=14.1−0.4+0.5MJup, indicating thatπMen b can be classified as a brown dwarf.Conclusions.TheπMen system represents a nice example of the extreme precision radial velocities that can be obtained with ESPRESSO for bright targets. Our determination of the 3D architecture of theπMen planetary system and the high relative misalignment of the planetary orbital planes put constraints on and challenge the theories of the formation and dynamical evolution of planetary systems. The accurate measurement of the mass ofπMen b contributes to make the brown dwarf desert a bit greener.

[1]  M. Wyatt,et al.  Evidence for a high mutual inclination between the cold Jupiter and transiting super Earth orbiting π Men , 2020, 2007.01871.

[2]  P. Kervella,et al.  Orbital inclination and mass of the exoplanet candidate Proxima c , 2020, Astronomy & Astrophysics.

[3]  Chelsea X. Huang,et al.  Two Intermediate-mass Transiting Brown Dwarfs from the TESS Mission , 2020, The Astronomical Journal.

[4]  H. Rauer,et al.  Is π Men c’s Atmosphere Hydrogen-dominated? Insights from a Non-detection of H i Lyα Absorption , 2019, The Astrophysical Journal.

[5]  N. Crouzet,et al.  MuSCAT2 multicolour validation of TESS candidates: an ultra-short-period substellar object around an M dwarf , 2019, Astronomy & Astrophysics.

[6]  Cea,et al.  TOI-503: The First Known Brown-dwarf Am-star Binary from the TESS Mission , 2019, The Astronomical Journal.

[7]  L. Lindegren The Gaia reference frame for bright sources examined using VLBI observations of radio stars , 2019, Astronomy & Astrophysics.

[8]  M. Janson,et al.  Detection of the nearest Jupiter analogue in radial velocity and astrometry data , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  J. Fortney,et al.  The Precision of Mass Measurements Required for Robust Atmospheric Characterization of Transiting Exoplanets , 2019, The Astrophysical Journal.

[10]  A. Santerne,et al.  Detection and characterisation of 54 massive companions with the SOPHIE spectrograph , 2019, Astronomy & Astrophysics.

[11]  Marshall C. Johnson,et al.  Greening of the brown-dwarf desert , 2019, Astronomy & Astrophysics.

[12]  A. Boccaletti,et al.  Constraining the properties of HD 206893 B , 2019, Astronomy & Astrophysics.

[13]  Timothy D. Brandt Erratum: “The Hipparcos–Gaia Catalog of Accelerations” (2018, ApJS, 239, 31) , 2019, The Astrophysical Journal Supplement Series.

[14]  D. Latham,et al.  New Substellar Discoveries from Kepler and K2: Is There a Brown Dwarf Desert? , 2019, The Astronomical Journal.

[15]  D. Ehrenreich,et al.  The XUV irradiation and likely atmospheric escape of the super-Earth π Men c , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[16]  Timothy D. Brandt,et al.  A Model-independent Mass and Moderate Eccentricity for β Pic b , 2018, The Astrophysical Journal.

[17]  P. Kervella,et al.  Stellar and substellar companions of nearby stars from Gaia DR2 , 2018, Astronomy & Astrophysics.

[18]  Timothy D. Brandt,et al.  Precise Dynamical Masses of Directly Imaged Companions from Relative Astrometry, Radial Velocities, and Hipparcos–Gaia DR2 Accelerations , 2018, The Astronomical Journal.

[19]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[20]  Timothy D. Brandt The Hipparcos–Gaia Catalog of Accelerations , 2018, The Astrophysical Journal Supplement Series.

[21]  A. Santerne,et al.  SWEET-Cat updated , 2018, Astronomy & Astrophysics.

[22]  L. Fossati,et al.  TESS’s first planet , 2018, Astronomy & Astrophysics.

[23]  Chelsea X. Huang,et al.  TESS Discovery of a Transiting Super-Earth in the pi Mensae System , 2018, The astrophysical journal. Letters.

[24]  Anthony G. A. Brown,et al.  The mass of the young planet Beta Pictoris b through the astrometric motion of its host star , 2018, Nature Astronomy.

[25]  C. Moutou,et al.  Imaging radial velocity planets with SPHERE , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  N. Santos,et al.  The TROY project , 2018, Astronomy & Astrophysics.

[27]  M. Janson,et al.  Improving dynamical mass constraints for intermediate-period substellar companions using Gaia DR2 , 2018, Astronomy & Astrophysics.

[28]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[29]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[30]  M. Tsantaki,et al.  Atmospheric stellar parameters for large surveys using FASMA, a new spectral synthesis package , 2017, 1710.00260.

[31]  A. Collier Cameron,et al.  The discovery of WASP-151b, WASP-153b, WASP-156b: Insights on giant planet migration and the upper boundary of the Neptunian desert , 2017, 1710.06321.

[32]  N. Santos,et al.  The TROY project: Searching for co-orbital bodies to known planets. I. Project goals and first results from archival radial velocity , 2017, 1710.01138.

[33]  J. Lillo-Box,et al.  Detection of co-orbital planets by combining transit and radial-velocity measurements , 2017, 1702.08775.

[34]  H. R. Coelho,et al.  Determining stellar parameters of asteroseismic targets: going beyond the use of scaling relations , 2017, 1701.04791.

[35]  H. Perets,et al.  Secular dynamics of multiplanet systems: Implications for the formation of hot and warm Jupiters via high-eccentricity migration , 2016, 1606.07438.

[36]  S. C. C. Barros,et al.  New planetary and eclipsing binary candidates from campaigns 1−6 of the K2 mission , 2016, 1607.02339.

[37]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[38]  S. G. Sousa,et al.  ARES v2 - new features and improved performance , 2015, 1504.02725.

[39]  M. Tsantaki,et al.  Li abundances in F stars: planets, rotation, and Galactic evolution , 2014, 1412.4618.

[40]  Yvonne Elsworth,et al.  Bayesian distances and extinctions for giants observed by Kepler and APOGEE , 2014, 1410.1350.

[41]  W. Chaplin,et al.  Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler , 2014, 1408.3988.

[42]  S. Sousa ARES + MOOG: A Practical Overview of an Equivalent Width (EW) Method to Derive Stellar Parameters , 2014, 1407.5817.

[43]  G. Ogilvie Tidal Dissipation in Stars and Giant Planets , 2014, 1406.2207.

[44]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[45]  E. Agol,et al.  TTVFast: AN EFFICIENT AND ACCURATE CODE FOR TRANSIT TIMING INVERSION PROBLEMS , 2014, 1403.1895.

[46]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[47]  B. Smalley,et al.  Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars: Lectures from the School of Spectroscopic Data Analyses , 2014 .

[48]  M. Tsantaki,et al.  SWEET-Cat: A catalogue of parameters for Stars With ExoplanETs - I. New atmospheric parameters and masses for 48 stars with planets , 2013, 1307.0354.

[49]  I. Yamamura,et al.  ON THE RADII OF BROWN DWARFS MEASURED WITH AKARI NEAR-INFRARED SPECTROSCOPY , 2013, 1304.1259.

[50]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[51]  Lixing Han,et al.  Implementing the Nelder-Mead simplex algorithm with adaptive parameters , 2010, Computational Optimization and Applications.

[52]  Instituto de Astrof'isica de Canarias,et al.  Spectroscopic characterization of a sample of metal-poor solar-type stars from the HARPS planet search program , 2010, 1012.1528.

[53]  M. Zechmeister,et al.  The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms , 2009, 0901.2573.

[54]  D. Queloz,et al.  Spectroscopic parameters for 451 stars in the HARPS GTO planet search program - Stellar [Fe/H] and the frequency of exo-Neptunes , 2008, 0805.4826.

[55]  E. Ford,et al.  Dynamical Outcomes of Planet-Planet Scattering , 2007, astro-ph/0703166.

[56]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[57]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[58]  Porto,et al.  A new code for automatic determination of equivalent widths: Automatic Routine for line Equivalent widths in stellar Spectra (ARES) , 2007, astro-ph/0703696.

[59]  E. Ford,et al.  Observational Constraints on Trojans of Transiting Extrasolar Planets , 2006, astro-ph/0609298.

[60]  A. Weiss,et al.  Basic physical parameters of a selected sample of evolved stars , 2006, astro-ph/0608160.

[61]  Matthew J. Holman,et al.  The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets , 2005, Science.

[62]  C. Lineweaver,et al.  How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars , 2004, astro-ph/0412356.

[63]  R. P. Butler,et al.  A probable planetary companion to HD 39091 from the Anglo-Australian Planet Search , 2001, astro-ph/0112084.

[64]  F. Allard,et al.  Deuterium Burning in Substellar Objects , 2000, astro-ph/0009174.

[65]  R. P. Butler,et al.  The Lick Planet Search: Detectability and Mass Thresholds , 1999, astro-ph/9906466.

[66]  S. Tremaine,et al.  Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B , 1997, Nature.

[67]  T. Guillot,et al.  A Theory of Extrasolar Giant Planets , 1995, astro-ph/9510046.

[68]  T. Guillot,et al.  Prospects for detection of extra-solar giant planets by next-generation telescopes , 1995, Nature.

[69]  R. Kurucz ATLAS9 Stellar Atmosphere Programs and 2 km/s grid. , 1993 .

[70]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[71]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .