A new SOR-type iteration method for solving linear systems
暂无分享,去创建一个
[1] O. Gonzalez. Time integration and discrete Hamiltonian systems , 1996 .
[2] Jan L. Cieslinski,et al. Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems , 2010, ArXiv.
[3] G. Quispel,et al. Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[4] Melvin Leok,et al. Geometric exponential integrators , 2017, J. Comput. Phys..
[5] J. M. Sanz-Serna,et al. Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.
[6] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[7] G. Quispel,et al. A new class of energy-preserving numerical integration methods , 2008 .
[8] Marlis Hochbruck,et al. A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.
[9] Xinyuan Wu,et al. Exponential Integrators Preserving First Integrals or Lyapunov Functions for Conservative or Dissipative Systems , 2016, SIAM J. Sci. Comput..
[10] Alexander G. Ramm,et al. Dynamical systems method for solving operator equations , 2004 .
[11] Moody T. Chu,et al. Linear algebra algorithms as dynamical systems , 2008, Acta Numerica.
[12] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[13] S. Agmon. The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.
[14] Xinyuan Wu,et al. Extended version with the analysis of dynamic system for iterative refinement of solution , 2010, Int. J. Comput. Math..
[15] Yuto Miyatake,et al. On the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systems , 2017, J. Comput. Appl. Math..
[16] T. Itoh,et al. Hamiltonian-conserving discrete canonical equations based on variational difference quotients , 1988 .
[17] L. Fauci,et al. A computational model of aquatic animal locomotion , 1988 .
[18] G. Quispel,et al. Solving ODEs numerically while preserving a first integral , 1996 .
[19] M. Chu. On the Continuous Realization of Iterative Processes , 1988 .