A new SOR-type iteration method for solving linear systems

Abstract Many discretization methods for continuous dynamical systems have the iterative nature and therefore can provide iterative techniques for solving problems in numerical linear algebra. In this paper, based on the discrete gradient and the variation-of-constants formula for ordinary differential equations, a new SOR-type iteration method is proposed for solving the linear system A x = b . The convergence of the new method is guaranteed by the decay of the Liapunov function. Numerical experiments are carried out to show the effectiveness of the new method.

[1]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[2]  Jan L. Cieslinski,et al.  Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems , 2010, ArXiv.

[3]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Melvin Leok,et al.  Geometric exponential integrators , 2017, J. Comput. Phys..

[5]  J. M. Sanz-Serna,et al.  Symplectic integrators for Hamiltonian problems: an overview , 1992, Acta Numerica.

[6]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[7]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[8]  Marlis Hochbruck,et al.  A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.

[9]  Xinyuan Wu,et al.  Exponential Integrators Preserving First Integrals or Lyapunov Functions for Conservative or Dissipative Systems , 2016, SIAM J. Sci. Comput..

[10]  Alexander G. Ramm,et al.  Dynamical systems method for solving operator equations , 2004 .

[11]  Moody T. Chu,et al.  Linear algebra algorithms as dynamical systems , 2008, Acta Numerica.

[12]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[13]  S. Agmon The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[14]  Xinyuan Wu,et al.  Extended version with the analysis of dynamic system for iterative refinement of solution , 2010, Int. J. Comput. Math..

[15]  Yuto Miyatake,et al.  On the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systems , 2017, J. Comput. Appl. Math..

[16]  T. Itoh,et al.  Hamiltonian-conserving discrete canonical equations based on variational difference quotients , 1988 .

[17]  L. Fauci,et al.  A computational model of aquatic animal locomotion , 1988 .

[18]  G. Quispel,et al.  Solving ODEs numerically while preserving a first integral , 1996 .

[19]  M. Chu On the Continuous Realization of Iterative Processes , 1988 .