Magma Storage Conditions of Large Plinian Eruptions of Santorini Volcano (Greece)

The intensive variables of dacitic-rhyodacitic magmas prior to four large Plinian eruptions of Santorini Volcano over the last 200 kyr (Minoan, Cape Riva, Lower Pumice 2 and Lower Pumice 1) were determined by combining crystallization experiments with study of the natural products, including the volatile contents of melt inclusions trapped in phenocrysts. Phase equilibria of the silicic magmas were determined at pressures of 1, 2 and 4 kbar, temperatures of 850-900°C, fluid (H2O + CO2)-saturation, XH2O [= molar H2O/(H2O + CO2)] between 0*6 and 1 (melt H2O contents of 2-10 wt %), and redox conditions of FMQ (fayalite-magnetite-quartz buffer) or NNO + 1 (where NNO is Ni-NiO buffer). Experiments were generally successful in reproducing the phenocryst assemblage of the natural products. The phase relationships vary significantly among the investigated compositions, revealing a sensitivity to small variations in whole-rock compositions. Our results show that the pre-eruptive storage conditions of the four silicic magmas were all very similar. The magmas were stored at T = 850-900°C and P ≥ 2 kbar, under moderately reduced conditions (ΔNNO = −0*9 to −0*1), and were poor in fluorine (∼500-800 ppm) and sulphur (≤100 ppm), but rich in water and chlorine (5-6 wt % and 2500-3500 ppm, respectively). In all cases, the melts were slightly undersaturated with respect to H2O, but most probably saturated with respect to H2O + Cl ± CO2 and a brine. The Santorini magma plumbing system appears to be dominated by a large, long-lived (≥200 kyr) predominantly silicic magma storage region situated at ≥8 km depth, from which crystal-poor melt batches were extracted during the largest caldera-forming eruptions of the volcanic system.

[1]  B. Scaillet,et al.  Phase Equilibrium Constraints on Pre-eruptive Conditions of Recent Felsic Explosive Volcanism at Pantelleria Island, Italy , 2010 .

[2]  P. Wallace Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data , 2005 .

[3]  R. Cioni,et al.  Upward migration of Vesuvius magma chamber over the past 20,000 years , 2008, Nature.

[4]  J. Devine,et al.  Magmatic conditions and processes in the storage zone of the 2004-2006 Mount St. Helens dacite , 2008 .

[5]  K. Konstantinou,et al.  Stress field around the Coloumbo magma chamber, southern Aegean: Its significance for assessing volcanic and seismic hazard in Santorini , 2012 .

[6]  G. Vougioukalakis,et al.  Highly Sr radiogenic tholeiitic magmas in the latest inter‐Plinian activity of Santorini volcano, Greece , 2009 .

[7]  B. Scaillet,et al.  Experimental Crystallization of Leucogranite Magmas , 1995 .

[8]  B. Endrun,et al.  S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion , 2008 .

[9]  J. Keller,et al.  Interplinian explosive activity of Santorini volcano (Greece) during the past 150,000 years , 2006 .

[10]  C. Mandeville,et al.  Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia , 1996 .

[11]  J. Stormer The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides , 1983 .

[12]  Alan Robock,et al.  Volcanism and the Earth's Atmosphere , 2003 .

[13]  F. Costa,et al.  Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano , 2012, Nature.

[14]  G. Natale,et al.  Seismicity and 3-D substructure at Somma–Vesuvius volcano: evidence for magma quenching , 2004 .

[15]  G. Ventura,et al.  The role of flank failure in modifying the shallow plumbing system of volcanoes: An example from Somma‐Vesuvius, Italy , 1999 .

[16]  R. Sparks,et al.  Origin of rhyolite and rhyodacite lavas and associated mafic inclusions of Cape Akrotiri, Santorini: the role of wet basalt in generating calcalkaline silicic magmas , 2004 .

[17]  Fanis Moschas,et al.  Recent geodetic unrest at Santorini Caldera, Greece , 2012 .

[18]  J. Luhr,et al.  Factors controlling sulfur concentrations in volcanic apatite , 1997 .

[19]  H. Sigurdsson,et al.  The May 18, 1980, eruption of Mount St. Helens: 1. Melt composition and experimental phase equilibria , 1985 .

[20]  F. Costa,et al.  Equilibration Scales in Silicic to Intermediate Magmas—Implications for Experimental Studies , 2007 .

[21]  Virginie Pinel,et al.  Magma chamber behavior beneath a volcanic edifice , 2003 .

[22]  Donald H. Lindsley,et al.  Internally consistent solution models for Fe-Mg-Mn-Ti oxides; Fe-Ti oxides , 1988 .

[23]  America Special Papers Geological Society of America Special Papers , 2012 .

[24]  W. Hildreth,et al.  Magma storage prior to the 1912 eruption at Novarupta, Alaska , 2002 .

[25]  M. Pownceby,et al.  The calibration and application of accurate redox sensors , 1992 .

[26]  R. Dall’Agnol,et al.  An Experimental Study of a Lower Proterozoic A-type Granite from theEastern Amazonian Craton, Brazil , 1999 .

[27]  T. Druitt,et al.  Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece) , 2013, Bulletin of Volcanology.

[28]  C. Newhall,et al.  Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines , 1998 .

[29]  G. Humbert,et al.  Improvements of the Shaw membrane technique for measurement and control of f H2 at high temperatures and pressures , 1992 .

[30]  Antonio Pepe,et al.  Volcanic spreading of Vesuvius, a new paradigm for interpreting its volcanic activity , 2005 .

[31]  Demitris Paradissis,et al.  Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth , 2012 .

[32]  T. Thordarson,et al.  Recent volatile evolution in the magmatic system of Hekla volcano, Iceland , 2006 .

[33]  Isabelle Lucas Le pluton de mykonos-delos-rhenee (cyclades, grece) : un exemple de mise en place synchrone de l'extension crustale , 1999 .

[34]  M. Pichavant Effects of B and H 2 O on liquidus phase relations in the haplogranite system at l kbar , 1987 .

[35]  J. F. Thompson Magmas, fluids, and ore deposits , 1995 .

[36]  Francis Albarède,et al.  Introduction to Geochemical Modeling , 1995 .

[37]  V. Wall,et al.  Origin and crystallization of some peraluminous (S-type) granitic magmas , 1981 .

[38]  A. Cruden,et al.  Granite magma formation, transport and emplacement in the Earth's crust , 2000, Nature.

[39]  P. Nomikou,et al.  Integrated volcanologic and petrologic analysis of the 1650 AD eruption of Kolumbo submarine volcano, Greece , 2014 .

[40]  John R. Elliott,et al.  Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece , 2006 .

[41]  V. Pinel,et al.  On the relationship between cycles of eruptive activity and growth of a volcanic edifice , 2010 .

[42]  M. Pownceby,et al.  Thermodynamic data from redox reactions at high temperatures. III. Activity-composition relations in Ni-Pd alloys from EMF measurements at 850–1250 K, and calibration of the NiO+Ni-Pd assemblage as a redox sensor , 1994 .

[43]  Paraskevi Nomikou,et al.  Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece , 2012 .

[44]  K. Putirka,et al.  Minerals, inclusions and volcanic processes , 2008 .

[45]  B. Scaillet,et al.  The Solubility of Sulphur in Hydrous Rhyolitic Melts , 2004 .

[46]  J. Webster,et al.  Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid , 2005 .

[47]  J. Webster Chloride Solubility in Felsic Melts and the Role of Chloride in Magmatic Degassing , 1997 .

[48]  H. Sigurdsson,et al.  Experimental constraints on pre-eruptive water contents and changing magma storage prior to explosive eruptions of Mount St Helens volcano , 1995 .

[49]  L. Jolivet,et al.  Granite intrusion in a metamorphic core complex: The example of the Mykonos laccolith (Cyclades, Greece) , 2011 .

[50]  J. Blundy,et al.  Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions: Chapter 33 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006 , 2008 .

[51]  Alberto Renzulli,et al.  Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes , 2010 .

[52]  K. Konstantinou Crustal rheology of the Santorini–Amorgos zone: Implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean , 2010 .

[53]  C. Mandeville,et al.  Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa , 2009 .

[54]  C. Annen Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism-volcanism relationships , 2011 .

[55]  Fanis Moschas,et al.  Quantifying the current unrest of the Santorini volcano: Evidence from a multiparametric dataset, involving seismological, geodetic, geochemical and other geophysical data , 2012 .

[56]  K. Herwig,et al.  MPI‐DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios , 2006 .

[57]  B. Tikoff,et al.  Modification of the regional stress field by magma intrusion and formation of tabular granitic plutons , 1999 .

[58]  Richard M. Thomas,et al.  Fragmentation of magma during Plinian volcanic eruptions , 1996 .

[59]  J. Webster Water solubility and chlorine partitioning in Cl-rich granitic systems: Effects of melt composition at 2 kbar and 800°C , 1992 .

[60]  Luc D. Lepage,et al.  ILMAT: an Excel worksheet for ilmenitemagnetite geothermometry and geobarometry , 2003 .

[61]  P. Wallace,et al.  Storage and interaction of compositionally heterogeneous magmas from the 1986 eruption of Augustine Volcano, Alaska , 2006 .

[62]  M. Searle,et al.  Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones , 2006 .

[63]  J. Blundy,et al.  Petrologic Reconstruction of Magmatic System Variables and Processes , 2008 .

[64]  A. J. White,et al.  Origin of an A-type granite; experimental constraints , 1986 .

[65]  W. Hildreth The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska , 1983 .

[66]  J. Webster The exsolution of magmatic hydrosaline chloride liquids , 2004 .

[67]  Mark S. Ghiorso,et al.  Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-Barometer , 2008, American Journal of Science.

[68]  T. Sisson,et al.  Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism , 1993 .

[69]  E. Cottrell,et al.  Petrologic and experimental evidence for the movement and heating of the pre-eruptive Minoan rhyodacite (Santorini, Greece) , 1999 .

[70]  D. Lindsley,et al.  New (and final!) models for the Ti-magnetite/ ilmenite geothermometer and oxygen barometer , 1985 .

[71]  David Anderson,et al.  Quilf: A pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides , 1993 .

[72]  P. King,et al.  Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia , 2003 .

[73]  B. Scaillet,et al.  Petrological and volcanological constraints on volcanic sulfur emissions to the atmosphere , 2003 .

[74]  J. Keller,et al.  The Plinian Lower Pumice 2 eruption, Santorini, Greece: Magma evolution and volatile behaviour , 2009 .

[75]  J. Webster Fluid-melt interactions involving Cl-rich granites: Experimental study from 2 to 8 kbar , 1992 .

[76]  Crranr,et al.  Mg / Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides , 2007 .

[77]  J. D. Cr-nlrnNs Origin of an A-type granite: Experimental constraints , 1986 .

[78]  B. W. Evans,et al.  The 15 June 1991 Eruption of Mount Pinatubo. I. Phase Equilibria and Pre-eruption P–T–fO2–fH2O Conditions of the Dacite Magma , 1999 .

[79]  N. Petford,et al.  Are granitic intrusions scale invariant? , 1997, Journal of the Geological Society.

[80]  C. Hawkesworth,et al.  Timescales of destructive plate margin magmatism: new insights from Santorini, Aegean volcanic arc , 2000 .

[81]  B. Scaillet,et al.  Phase Equilibria of the Lyngdal Granodiorite (Norway): Implications for the Origin of Metaluminous Ferroan Granitoids , 2006 .

[82]  F. Costa,et al.  Petrological and Experimental Constraints on the Pre-eruption Conditions of Holocene Dacite from Volcan San Pedro (36 S, Chilean Andes) and the Importance of Sulphur in Silicic Subduction-related Magmas , 2004 .

[83]  B. Scaillet,et al.  Experimental Constraints on the Origin of the 1991 Pinatubo Dacite , 2003 .

[84]  B. Frost Chapter 1.INTRODUCTION TO OXYGEN FUGACITY AND ITS PETROLOGIC IMPORTANCE , 1991 .

[85]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[86]  S. Self,et al.  Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects , 1984 .

[87]  C. Jaupart,et al.  Two models for the formation of magma reservoirs by small increments , 2011 .

[88]  T. Druitt,et al.  Caldera formation on Santorini and the physiography of the islands in the late Bronze Age , 1992 .

[89]  D. Jerram,et al.  Using the Sr isotope compositions of feldspars and glass to distinguish magma system components and dynamics , 2010 .

[90]  C. Roman,et al.  Marine investigations of Greece's Santorini Volcanic Field , 2006 .

[91]  John R. Holloway,et al.  Volatiles in magmas , 1994 .

[92]  BnuNo Sclu-lel,et al.  Improvements of the Shaw membrane technique for measurement and control of f . , at high temperatures and pressures , 2007 .

[93]  D. Pyle,et al.  Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. , 2006 .

[94]  H. Traineau,et al.  Effects of f O2 and H2O on andesite phase relations between 2 and 4 kbar , 1999 .

[95]  D. Prior,et al.  Bang! Month-Scale Eruption Triggering at Santorini Volcano , 2008, Science.

[96]  M. Ghiorso THERMODYNAMIC MODELS OF IGNEOUS PROCESSES , 1997 .

[97]  T. Druitt New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis , 2014, Bulletin of Volcanology.

[98]  H. Traineau,et al.  Magma storage conditions and control of eruption regime in silicic volcanoes: experimental evidence from Mt. Pelée , 1998 .

[99]  I. Buick The late Alpine evolution of an extensional shear zone, Naxos, Greece , 1991, Journal of the Geological Society.

[100]  N. Métrich,et al.  EXPERIMENTAL STUDY OF CHLORINE BEHAVIOR IN HYDROUS SILICIC MELTS , 1992 .

[101]  B. Scaillet,et al.  Experimental Crystallization of a High-K Arc Basalt: the Golden Pumice, Stromboli Volcano (Italy) , 2006 .

[102]  A. Burgisser,et al.  Conditions for the growth of a long‐lived shallow crustal magma chamber below Mount Pelee volcano (Martinique, Lesser Antilles Arc) , 2008 .

[103]  Y. Dilek,et al.  The Geodynamics of the Aegean and Anatolia , 2007 .

[104]  J. Huijsmans Calc-alkaline lavas from the volcanic complex of Santorini, Aegean Sea, Greece : a petrological, geochemical and stratigraphic study , 1985 .

[105]  B. Scaillet,et al.  Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas , 2012 .

[106]  N. Métrich,et al.  PIGME fluorine determination using a nuclear microprobe with application to glass inclusions , 1991 .

[107]  Marie C. Johnson,et al.  Experimental calibration of the aluminum-in-hornblende geobarometer with application , 1989 .

[108]  R. S. J. Sparks,et al.  Explosive volcanism on Santorini, Greece , 1989, Geological Magazine.

[109]  E. Watson,et al.  The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations , 1984 .

[110]  J. Huijsmans,et al.  Geochemistry and evolution of the calc-alkaline volcanic complex of santorini, Aegean Sea, Greece , 1988 .

[111]  F. Gutiérrez,et al.  On the longevity of large upper crustal silicic magma reservoirs , 2013 .

[112]  Cruden Alexander.R. On the emplacement of tabular granites , 1998, Journal of the Geological Society.

[113]  B. W. Evans,et al.  Redox control of sulfur degassing in silicic magmas , 1998 .

[114]  T. Meier,et al.  P and S velocity structures of the Santorini-Coloumbo volcanic system (Aegean Sea, Greece) obtained by non-linear inversion of travel times and its tectonic implications , 2010 .

[115]  J. Webster,et al.  Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas , 1994 .

[116]  G. Layne,et al.  Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses , 1995 .

[117]  J. Webster Exsolution of magmatic volatile phases from Cl-enriched mineralizing granitic magmas and implications for ore metal transport , 1997 .

[118]  B. Scaillet,et al.  Santorini volcano magma plumbing system: constraints from a combined experimental and natural products study , 2013 .

[119]  B. Scaillet,et al.  Experimental Constraints on Parameters Controlling the Difference in the Eruptive Dynamics of Phonolitic Magmas: the Case of Tenerife (Canary Islands) , 2012 .

[120]  J. Lowenstern,et al.  VOLATILECALC: a silicate melt-H 2 O-CO 2 solution model written in Visual Basic for excel , 2002 .

[121]  J. Luhr Experimental Phase Relations of Water- and Sulfur-Saturated Arc Magmas and the 1982 Eruptions of El Chichón Volcano , 1990 .

[122]  M. Schwarz,et al.  Marine tephra from the Cape Riva eruption (22 ka) of Santorini in the Sea of Marmara , 2002 .

[123]  J. Huijsmans,et al.  Post-caldera dacites from the Santorini volcanic complex, Aegean Sea, Greece: an example of the eruption of lavas of near-constant composition over a 2,200 year period , 1986 .

[124]  R. Clocchiatti,et al.  The Minoan and post-Minoan eruptions, Santorini (Greece), in the light of melt inclusions: chlorine and sulphur behaviour , 2000 .

[125]  B. Scaillet,et al.  Accurate control of fH2 in cold-seal pressure vessels with the Shaw membrane technique;Accurate control of fH2 in cold-seal pressure vessels with the Shaw membrane technique , 1995 .

[126]  M. Rutherford,et al.  The stability of igneous anhydrite - Experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas , 1987 .

[127]  J. Webster,et al.  Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O + CO2 fluids: New implications for granitic differentiation and ore deposition , 1988 .

[128]  C. Jaupart,et al.  Ultra-rapid formation of large volumes of evolved magma , 2006 .

[129]  I. Carmichael The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates , 1966 .

[130]  J. Lowenstern A review of the contrasting behavior of two magmatic volatiles: Chlorine and carbon dioxide , 2000 .

[131]  E. Horsman,et al.  Multiscale magmatic cyclicity, duration of pluton construction, and the paradoxical relationship between tectonism and plutonism in continental arcs , 2011 .

[132]  M. Searle,et al.  Mechanisms and timescales of felsic magma segregation, ascent and emplacement in the Himalaya , 2006, Geological Society, London, Special Publications.

[133]  H. Westrich,et al.  Degassing of the 1912 Katmai magmas , 1991 .