Medial vestibular nucleus in the guinea-pig: NMDA-induced oscillations

[1]  土井 勝美 Actions of excitatory amino acid antagonists on synaptic inputs to the rat medial vestibular nucleus : an electrophysiological study in vitro , 1990 .

[2]  S. Grillner,et al.  Excitatory amino acids and synaptic transmission: the evidence for a physiological function. , 1990, Trends in pharmacological sciences.

[3]  J. Hubbard,et al.  Evidence that NMDA receptors contribute to synaptic function in the guinea pig medial vestibular nucleus , 1990, Brain Research.

[4]  T. Kitama,et al.  Vertical eye movement-related secondary vestibular neurons ascending in medial longitudinal fasciculus in cat. II. Direct connections with extraocular motoneurons. , 1990, Journal of neurophysiology.

[5]  T. Kitama,et al.  Vertical eye movement-related secondary vestibular neurons ascending in medial longitudinal fasciculus in cat I. Firing properties and projection pathways. , 1990, Journal of neurophysiology.

[6]  A. Berthoz,et al.  Neural correlates of horizontal vestibulo‐ocular reflex cancellation during rapid eye movements in the cat. , 1989, The Journal of physiology.

[7]  J. Hubbard,et al.  Neuronal activity in the guinea pig medial vestibular nucleus in vitro following chronic unilateral labyrinthectomy , 1989, Neuroscience Letters.

[8]  T. Stone,et al.  NMDA receptors and ligands in the vertebrate CNS , 1988, Progress in Neurobiology.

[9]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[10]  Paul F. Smith,et al.  The NMDA antagonists MK801 and CPP disrupt compensation for unilateral labyrinthectomy in the guinea pig , 1988, Neuroscience Letters.

[11]  R. Nicoll,et al.  The coupling of neurotransmitter receptors to ion channels in the brain. , 1988, Science.

[12]  Ian S. Curthoys,et al.  Neuronal activity in the contralateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy , 1988, Brain Research.

[13]  Ian S. Curthoys,et al.  Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy , 1988, Brain Research.

[14]  T. Kno¨pfel Evidence forN-methyl-d-aspartic acid receptor-mediated modulation of the commissural input to central vestibular neurons of the frog , 1987, Brain Research.

[15]  S. Grillner,et al.  N-methyl-D-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  L. Iversen,et al.  Excitatory amino acids in the brain - focus on NMDA receptors , 1987, Trends in Neurosciences.

[17]  G. Lynch,et al.  Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation , 1986, Brain Research.

[18]  P. C. Schwindt,et al.  The induction and modification of voltage-sensitive responses in cat neocortical nuerons by N-methyl-d-aspartate , 1986, Brain Research.

[19]  C. Bader,et al.  Sodium-activated potassium current in cultured avian neurones , 1985, Nature.

[20]  D. Demêmes,et al.  Selective retrograde labeling of neurons of the cat vestibular ganglion with [3H]d-aspartate , 1984, Brain Research.

[21]  W. Graf,et al.  A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals—I. Orientation of semicircular canals and extraocular muscles , 1984, Neuroscience.

[22]  W. Graf,et al.  A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals—II. Neuronal networks underlying vestibulo-oculomotor coordination , 1984, Neuroscience.

[23]  T E Salt,et al.  Effects of excitatory amino acids and their antagonists on membrane and action potentials of cat caudate neurones. , 1983, The Journal of physiology.

[24]  G. Orlovsky,et al.  Activity of vestibulospinal neurons during locomotion. , 1972, Brain research.

[25]  H Shimazu,et al.  Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. , 1965, Journal of neurophysiology.

[26]  M. Mühlethaler,et al.  Medial vestibular nucleus in the guinea-pig , 2004, Experimental Brain Research.

[27]  M. Mühlethaler,et al.  Low threshold calcium spikes in medial vestibular nuclei neurones in vitro: a role in the generation of the vestibular nystagmus quick phase in vivo? , 2004, Experimental Brain Research.

[28]  W. Graf,et al.  A radiological analysis of the postural syndromes following hemilabyrinthectomy and selective canal and otolith lesions in the guinea pig , 2004, Experimental Brain Research.

[29]  J. Raymond,et al.  Quantitative autoradiographic characterization of l-[3H] glutamate binding sites in rat vestibular nuclei , 2004, Experimental Brain Research.

[30]  P. Vidal,et al.  NMDA receptors contribute to the resting discharge of vestibular neurons in the normal and hemilabyrinthectomized guinea pig , 2004, Experimental Brain Research.

[31]  A. Nieoullon,et al.  Evidence for glutamate as a neurotransmitter in the cat vestibular nerve: radioautographic and biochemical studies , 2004, Experimental Brain Research.

[32]  I. Curthoys The response of primary horizontal semicircular canal neurons in the rat and guinea pig to angular acceleration , 2004, Experimental Brain Research.

[33]  T. Knöpfel,et al.  Lesion-induced vestibular plasticity in the frog: are N-methyl-D-aspartate receptors involved? , 2004, Experimental Brain Research.

[34]  M. Mühlethaler,et al.  Medial vestibular nucleus in the guinea-pig. I. Intrinsic membrane properties in brainstem slices. , 1991, Experimental brain research.

[35]  P. Shinnick‐Gallagher,et al.  Primary afferent excitatory transmission recorded intracellularly in vitro from rat medial vestibular neurons , 1989, Synapse.

[36]  T. Knöpfel,et al.  The role of NMDA and non-NMDA receptors in the central vestibular synaptic transmission. , 1988, Advances in oto-rhino-laryngology.

[37]  W. Precht,et al.  Pharmacological aspects of excitatory synaptic transmission to second‐order vestibular neurons in the frog , 1987, Synapse.

[38]  H Collewijn,et al.  Adaptation of optokinetic and vestibulo-ocular reflexes to modified visual input in the rabbit. , 1979, Progress in brain research.