Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities.

We present a combined experimental and theoretical study of the emission spectrum of zero dimensional nanocavity polaritons in electrically tunable single dot nanocavities. Such devices allow us to vary the dot-cavity detuning in situ and probe the emission spectrum under well-controlled conditions of lattice temperature and incoherent excitation level. Our results show that the observation of a double peak in the emission spectrum is not an unequivocal signature of strong coupling. Moreover, by comparing our results with theory, we extract the effective vacuum Rabi splitting, the pure dephasing rate, and their dependence on the incoherent optical pumping power and lattice temperature. Our study highlights how coupling to the lattice and dynamical fluctuations in the solid-state environment influence the coherence properties of quantum dot microcavity polaritons and, sometimes, may mask the occurrence of strong coupling.

[1]  S. Iwamoto,et al.  Cavity Resonant Excitation of InGaAs Quantum Dots in Photonic Crystal Nanocavities , 2006 .

[2]  M. Amann,et al.  Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities , 2008, 0802.2008.

[3]  Hyatt M. Gibbs,et al.  Scanning a photonic crystal slab nanocavity by condensation of xenon , 2005 .

[4]  L. Marsal,et al.  Acoustic phonon broadening mechanism in single quantum dot emission , 2001 .

[5]  B. Gerardot,et al.  Temperature-dependent linewidth of charged excitons in semiconductor quantum dots: Strongly broadened ground state transitions due to acoustic phonon scattering , 2004 .

[6]  G. Bastard,et al.  Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots , 2003 .

[7]  Dirk Englund,et al.  Controlling cavity reflectivity with a single quantum dot , 2007, Nature.

[8]  M. S. Skolnick,et al.  Quantum-confined Stark shifts of charged exciton complexes in quantum dots , 2004 .

[9]  M. Amann,et al.  Electrically probing photonic bandgap phenomena in contacted defect nanocavities , 2007, 0709.2121.

[10]  Joseph H. Eberly,et al.  The time-dependent physical spectrum of light* , 1977 .

[11]  Technical University of Denmark,et al.  Electrical control of spontaneous emission and strong coupling for a single quantum dot , 2008, 0810.3010.

[12]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[13]  S. Reitzenstein,et al.  Photon antibunching from a single quantum dot-microcavity system in the strong coupling regime , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[14]  A. Badolato,et al.  Quantum dot spectroscopy using cavity quantum electrodynamics. , 2008, Physical review letters.

[15]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[16]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[17]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[18]  M. Amann,et al.  Efficient and selective cavity-resonant excitation for single photon generation , 2009 .

[19]  I. Favero,et al.  Temperature dependence of the zero-phonon linewidth in quantum dots : An effect of the fluctuating environment , 2007 .

[20]  Carmichael,et al.  Subnatural linewidth averaging for coupled atomic and cavity-mode oscillators. , 1989, Physical review. A, General physics.

[21]  Jean-Michel Gérard,et al.  Strong-coupling regime for quantum boxes in pillar microcavities: Theory , 1999 .

[22]  I. Favero,et al.  Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot , 2006, cond-mat/0610346.

[23]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[24]  Dirk Reuter,et al.  Exciton dephasing via phonon interactions in InAs quantum dots: dependence on quantum confinement , 2005 .

[25]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[26]  F. Laussy,et al.  Strong coupling of quantum dots in microcavities. , 2007, Physical review letters.

[27]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .