Video scrambling for privacy protection in video surveillance: recent results and validation framework

The issue of privacy in video surveillance has drawn a lot of interest lately. However, thorough performance analysis and validation is still lacking, especially regarding the fulfillment of privacy-related requirements. In this paper, we first review recent Privacy Enabling Technologies (PET). Next, we discuss pertinent evaluation criteria for effective privacy protection. We then put forward a framework to assess the capacity of PET solutions to hide distinguishing facial information and to conceal identity. We conduct comprehensive and rigorous experiments to evaluate the performance of face recognition algorithms applied to images altered by PET. Results show the ineffectiveness of naïve PET such as pixelization and blur. Conversely, they demonstrate the effectiveness of more sophisticated scrambling techniques to foil face recognition.

[1]  Touradj Ebrahimi,et al.  H.264/AVC video scrambling for privacy protection , 2008, 2008 15th IEEE International Conference on Image Processing.

[2]  Sen-Ching S. Cheung,et al.  Managing privacy data in pervasive camera networks , 2008, 2008 15th IEEE International Conference on Image Processing.

[3]  Bradley Malin,et al.  Preserving privacy by de-identifying face images , 2005, IEEE Transactions on Knowledge and Data Engineering.

[4]  M. D. MacLaren The Art of Computer Programming. Volume 2: Seminumerical Algorithms (Donald E. Knuth) , 1970 .

[5]  Frederic Dufaux,et al.  Video surveillance using JPEG 2000 , 2004, SPIE Optics + Photonics.

[6]  Touradj Ebrahimi,et al.  A framework for the validation of privacy protection solutions in video surveillance , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[7]  Mohan Trivedi,et al.  The networked sensor tapestry (NeST): a privacy enhanced software architecture for interactive analysis of data in video-sensor networks , 2004, VSSN '04.

[8]  Isabel Martinez-Ponte,et al.  ROBUST HUMAN FACE HIDING ENSURING PRIVACY , 2004 .

[9]  Mohan S. Kankanhalli,et al.  Privacy modeling for video data publication , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[10]  H. T. Mouftah,et al.  A real-time privacy-sensitive data hiding approach based on chaos cryptography , 2010, 2010 IEEE International Conference on Multimedia and Expo.

[11]  Touradj Ebrahimi,et al.  The MPEG-4 Book , 2002 .

[12]  Min Wu,et al.  A joint signal processing and cryptographic approach to multimedia encryption , 2006, IEEE Transactions on Image Processing.

[13]  Hari Kalva,et al.  Compression Independent Reversible Encryption for Privacy in Video Surveillance , 2009, EURASIP J. Inf. Secur..

[14]  Christophe De Vleeschouwer,et al.  Overview on Selective Encryption of Image and Video: Challenges and Perspectives , 2008, EURASIP J. Inf. Secur..

[15]  Robert Bernecky Book review: Multiprocessors by Daniel Tabak (Prentice Hall, Englewood Cliffs, NJ) , 1991, CARN.

[16]  Alex Pentland,et al.  Face recognition using eigenfaces , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[17]  Touradj Ebrahimi,et al.  Scrambling for Privacy Protection in Video Surveillance Systems , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  A. Cavallaro Privacy in Video Surveillance , 2007 .

[19]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2013, The Kluwer international series in engineering and computer science.

[20]  Naranker Dulay,et al.  Towards context-aware face anonymisation , 2008, MUM '08.

[21]  Sharath Pankanti,et al.  Enabling video privacy through computer vision , 2005, IEEE Security & Privacy Magazine.

[22]  Michael A. Caloyannides Society cannot function without privacy , 2003, IEEE Security & Privacy Magazine.

[23]  Amir Said Measuring the strength of partial encryption schemes , 2005, IEEE International Conference on Image Processing 2005.

[24]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[25]  T.E. Boult,et al.  PICO: Privacy through Invertible Cryptographic Obscuration , 2005, Computer Vision for Interactive and Intelligent Environment (CVIIE'05).

[26]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[27]  C. V. Ramamoorthy,et al.  Knowledge and Data Engineering , 1989, IEEE Trans. Knowl. Data Eng..

[28]  Rama Chellappa,et al.  Discriminant analysis of principal components for face recognition , 1998 .

[29]  Andrew Senior Protecting Privacy in Video Surveillance , 2009 .

[30]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[31]  Minghua Chen,et al.  Hiding privacy information in video surveillance system , 2005, IEEE International Conference on Image Processing 2005.

[32]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[33]  K. Plataniotis,et al.  Privacy Protected Surveillance Using Secure Visual Object Coding , 2008, IEEE Transactions on Circuits and Systems for Video Technology.