Sparsely Connected DenseNet for Malaria Parasite Detection

[1]  Martial Hebert,et al.  Log-DenseNet: How to Sparsify a DenseNet , 2017, ArXiv.

[2]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[3]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[4]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Ping Tan,et al.  Sparsely Aggregated Convolutional Networks , 2018, ECCV.

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  George R. Thoma,et al.  Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images , 2018, PeerJ.

[9]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[10]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[11]  Kun Wan,et al.  Reconciling Feature-Reuse and Overfitting in DenseNet with Specialized Dropout , 2019, 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI).