Single crystal hybrid perovskite field-effect transistors

The fields of photovoltaics, photodetection and light emission have seen tremendous activity in recent years with the advent of hybrid organic-inorganic perovskites. Yet, there have been far fewer reports of perovskite-based field-effect transistors. The lateral and interfacial transport requirements of transistors make them particularly vulnerable to surface contamination and defects rife in polycrystalline films and bulk single crystals. Here, we demonstrate a spatially-confined inverse temperature crystallization strategy which synthesizes micrometre-thin single crystals of methylammonium lead halide perovskites MAPbX3 (X = Cl, Br, I) with sub-nanometer surface roughness and very low surface contamination. These benefit the integration of MAPbX3 crystals into ambipolar transistors and yield record, room-temperature field-effect mobility up to 4.7 and 1.5 cm2 V−1 s−1 in p and n channel devices respectively, with 104 to 105 on-off ratio and low turn-on voltages. This work paves the way for integrating hybrid perovskite crystals into printed, flexible and transparent electronics.The methylammonium lead halide perovskites have shown excellent optoelectronic properties but the field-effect transistors are much less studied. Here Yu et al. synthesize micrometer-thin crystals of perovskites with low surface contamination and make ambipolar transistor devices with high mobilities.

[1]  C. Wagner,et al.  Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis , 1980 .

[2]  K. Fujiwara GROWTH AND CHARACTERIZATION , 1995 .

[3]  G. Tourillon,et al.  Adsorption of some substituted ethylene molecules on Pt(111) at 95 K Part 1: NEXAFS, XPS and UPS studies , 1996 .

[4]  H. Lee,et al.  Bottom- and top-gate field-effect thin-film transistors with p channels of sintered HgTe nanocrystals , 2006 .

[5]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[6]  Yong-Young Noh,et al.  Controlling Electron and Hole Charge Injection in Ambipolar Organic Field‐Effect Transistors by Self‐Assembled Monolayers , 2009 .

[7]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[8]  Gui Yu,et al.  Functional Organic Field‐Effect Transistors , 2010, Advanced materials.

[9]  Mario Caironi,et al.  Charge Injection in Solution‐Processed Organic Field‐Effect Transistors: Physics, Models and Characterization Methods , 2012, Advanced materials.

[10]  Daoben Zhu,et al.  Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. , 2012, Chemical reviews.

[11]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[12]  A. Amassian,et al.  Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature. , 2013, Chemical communications.

[13]  A. Amassian,et al.  Hole‐Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper(I) Thiocyanate (CuSCN) Processed from Solution at Room Temperature , 2013, Advanced materials.

[14]  P. Leleux,et al.  High transconductance organic electrochemical transistors , 2013, Nature Communications.

[15]  Jonathan Rivnay,et al.  Organic Electrochemical Transistors with Maximum Transconductance at Zero Gate Bias , 2013, Advanced materials.

[16]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[17]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[18]  Qingfeng Dong,et al.  Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination , 2015, Nature Photonics.

[19]  Cesare Soci,et al.  Lead iodide perovskite light-emitting field-effect transistor , 2015, Nature Communications.

[20]  Shi-Joon Sung,et al.  Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode , 2015 .

[21]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[22]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[23]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[24]  Paul L. Burn,et al.  Filterless narrowband visible photodetectors , 2015, Nature Photonics.

[25]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[26]  Y. Mei Electrostatic gating of hybrid halide perovskite fi eld-effect transistors : balanced ambipolar transport at room-temperature , 2015 .

[27]  Qiyuan He,et al.  Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics , 2015, Science Advances.

[28]  Hideyuki Tanaka,et al.  Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light. , 2015, The journal of physical chemistry letters.

[29]  Jong-Hyun Ahn,et al.  High‐Performance Perovskite–Graphene Hybrid Photodetector , 2015, Advanced materials.

[30]  Ahmad R. Kirmani,et al.  Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals , 2015, Nature Communications.

[31]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[32]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[33]  Erkki Alarousu,et al.  CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector. , 2015, The journal of physical chemistry letters.

[34]  K. Butler,et al.  Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3 , 2015 .

[35]  Z. Vardeny,et al.  Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature , 2015 .

[36]  Arif D. Sheikh,et al.  Ambipolar solution-processed hybrid perovskite phototransistors , 2015, Nature Communications.

[37]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[38]  Lin-wang Wang,et al.  Materials and Methods Supplementary Text Fig. S1 Reference (35) Database S1 Atomically Thin Two-dimensional Organic-inorganic Hybrid Perovskites , 2022 .

[39]  X. Ren,et al.  Two‐Inch‐Sized Perovskite CH3NH3PbX3 (X = Cl, Br, I) Crystals: Growth and Characterization , 2015, Advanced materials.

[40]  Alain Goriely,et al.  High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization , 2015, Nature Communications.

[41]  Wei Xu,et al.  Solution‐Grown Monocrystalline Hybrid Perovskite Films for Hole‐Transporter‐Free Solar Cells , 2016, Advanced materials.

[42]  Atula S. D. Sandanayaka,et al.  Solution‐Processed Organic–Inorganic Perovskite Field‐Effect Transistors with High Hole Mobilities , 2016, Advanced materials.

[43]  Jin-Song Hu,et al.  General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films. , 2016, Journal of the American Chemical Society.

[44]  Manas R. Parida,et al.  Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films , 2016, Nature Communications.

[45]  C. Zhong,et al.  Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering , 2016, Science Advances.

[46]  Q. Yan,et al.  Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 10(8) cm(-3). , 2016, Journal of the American Chemical Society.

[47]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[48]  Yang Yang,et al.  Interfacial Degradation of Planar Lead Halide Perovskite Solar Cells. , 2016, ACS nano.

[49]  Ruixia Yang,et al.  Hysteresis‐Suppressed High‐Efficiency Flexible Perovskite Solar Cells Using Solid‐State Ionic‐Liquids for Effective Electron Transport , 2016, Advanced materials.

[50]  X. Duan,et al.  Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals , 2016, Nature Communications.

[51]  A. Köhler,et al.  Iodine Migration and its Effect on Hysteresis in Perovskite Solar Cells , 2016, Advanced materials.

[52]  Manas R. Parida,et al.  Surface Restructuring of Hybrid Perovskite Crystals , 2016 .

[53]  Padhraic Mulligan,et al.  Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals , 2016, Nature Photonics.

[54]  Jin Jang,et al.  Ambipolar Triple Cation Perovskite Field Effect Transistors and Inverters , 2017, Advanced materials.

[55]  Pichaya Pattanasattayavong,et al.  Metal‐Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities , 2017, Advanced materials.

[56]  Jinsong Huang,et al.  Anomalous photovoltaic effect in organic-inorganic hybrid perovskite solar cells , 2017, Science Advances.

[57]  A. Amassian,et al.  Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution , 2017, Science Advances.

[58]  Ayan A. Zhumekenov,et al.  Double Charged Surface Layers in Lead Halide Perovskite Crystals. , 2017, Nano letters.

[59]  Qiyuan He,et al.  The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field‐Effect Transistors , 2017, Advanced materials.

[60]  Satyaprasad P. Senanayak,et al.  Understanding charge transport in lead iodide perovskite thin-film field-effect transistors , 2017, Science Advances.

[61]  N. Fang,et al.  High‐Performance Single‐Crystalline Perovskite Thin‐Film Photodetector , 2018, Advanced materials.

[62]  M. Guthold,et al.  Enhanced Charge Transport in Hybrid Perovskite Field‐Effect Transistors via Microstructure Control , 2018, Advanced Electronic Materials.