Structure of intercalated Cs in zeolite ITQ-4: an array of metal ions and correlated electrons confined in a pseudo-1D nanoporous host.

The presence of Cs+ ions in the pseudo-1D nanopores of zeolite ITQ-4, Si32O64, is confirmed by x-ray diffraction and atomic pair distribution function analysis. Inside the nanopores the Cs+ ions are found to assemble in zigzag chains and thus form an extended, positively charged sublattice providing charge balance for a low-density electron gas also confined to the nanopores.

[1]  J. L. Dye,et al.  Toward inorganic electrides. , 2002, Journal of the American Chemical Society.

[2]  D. Price,et al.  Stabilization of selenium in zeolites: an anomalous X-ray scattering study , 1999 .

[3]  M. Kanatzidis,et al.  Application of Atomic Pair Distribution Function Analysis to Materials with Intrinsic Disorder. Three-Dimensional Structure of Exfoliated-Restacked WS2: Not Just a Random Turbostratic Assembly of Layers , 2000 .

[4]  Andrew G. Glen,et al.  APPL , 2001 .

[5]  P. A. Barrett,et al.  Structure of ITQ-4, a New Pure Silica Polymorph Containing Large Pores and a Large Void Volume , 1997 .

[6]  S. Yuasa,et al.  Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111). , 2001, Physical review letters.

[7]  J. L. Dye,et al.  Electrides: Ionic Salts with Electrons as the Anions , 1990, Science.

[8]  Michael Thorpe,et al.  Local structure from diffraction , 2002 .

[9]  J. L. Dye,et al.  Anionic electrons in electrides , 1993, Nature.

[10]  T. Egami Atomic Correlations in Non-Periodic Matter , 1990 .

[11]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[12]  Why Do the Electrons Play the Role of Anions in the Electrides , 1990 .

[13]  G. Schmid Nanoclusters: Building blocks for future nanoelectronic devices? , 2001 .

[14]  David J. Singh,et al.  Theoretical determination that electrons act as anions in the electride Cs+ (15-crown-5)2·e- , 1993, Nature.

[15]  Valeri Petkov,et al.  RAD, a program for analysis of X‐ray diffraction data from amorphous materials for personal computers , 1989 .

[16]  Y. Shiraishi,et al.  Effect of additional metal ions on catalyses of polymer-stabilized metal nanoclusters , 2001 .

[17]  Local structure of In0.5Ga0.5As from joint high-resolution and differential pair distribution function analysis , 1999, cond-mat/9911293.

[18]  L. Iton,et al.  Nanoclusters in Zeolite , 1997 .

[19]  É. Lippmaa,et al.  Evidence for an Antiferromagnetic Transition in a Zeolite-Supported Cubic Lattice of F Centers , 1998 .

[20]  S. Billinge,et al.  Local structure of random InxGa1−xAs alloys by full-profile fitting of atomic pair distribution functions , 2001 .

[21]  Determination of size and concentration of copper nanoparticles dispersed in glasses using spectroscopic ellipsometry , 2001 .

[22]  J. L. Dye,et al.  Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals† , 1997 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.