Approximate global convergence and quasireversibility for a coefficient inverse problem with backscattering data

A numerical method possessing the approximate global convergence property is developed for a 3-D coefficient inverse problem for hyperbolic partial differential equations with backscattering data resulting from a single measurement. An important part of this technique is the quasireversibility method. An approximate global convergence theorem is proved. Results of two numerical experiments are presented. Bibliography: 46 titles. Illustrations: 2 figures.

[1]  Laurent Bourgeois,et al.  A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation , 2005 .

[2]  Hanli Liu,et al.  A globally convergent numerical method for an inverse elliptic problem of optical tomography , 2010 .

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[5]  Sergei V. Pereverzev,et al.  A Carleman estimate and the balancing principle in the quasi-reversibility method for solving the Cauchy problem for the Laplace equation , 2009 .

[6]  Larisa Beilina,et al.  Hybrid FEM/FDM method for an inverse scattering problem , 2003 .

[7]  Lam H. Nguyen,et al.  Obstacle avoidance and concealed target detection using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) forward imaging radar , 2007, SPIE Defense + Commercial Sensing.

[8]  J C Newell,et al.  Imaging cardiac activity by the D-bar method for electrical impedance tomography , 2006, Physiological measurement.

[9]  M I Belishev WAVE BASES IN MULTIDIMENSIONAL INVERSE PROBLEMS , 1990 .

[10]  Michael V. Klibanov,et al.  A new version of the quasi-reversibility method for the thermoacoustic tomography and a coefficient inverse problem , 2007 .

[11]  Jérémi Dardé,et al.  A duality-based method of quasi-reversibility to solve the Cauchy problem in the presence of noisy data , 2010 .

[12]  V. Romanov,et al.  Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement , 2010 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Roman Novikov The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator , 1992 .

[15]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[16]  Michael V. Klibanov,et al.  A Globally Convergent Numerical Method for a Coefficient Inverse Problem with Backscattering Data , 2011 .

[17]  Franck Boyer,et al.  Discrete Carleman Estimates for Elliptic Operators in Arbitrary Dimension and Applications , 2010, SIAM J. Control. Optim..

[18]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[19]  An effectivization of the global reconstruction in the Gel'fand-Calderon inverse problem in three dimensions , 2008, 0810.3485.

[20]  M. I. Belishev,et al.  Dynamical variant of the BC-method: theory and numerical testing , 1999 .

[21]  Michael V. Klibanov,et al.  Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D , 2010 .

[22]  Lam H. Nguyen,et al.  Blind backscattering experimental data collected in the field and an approximately globally convergent inverse algorithm , 2012 .

[23]  Jérémi Dardé,et al.  About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains , 2010 .

[24]  Roman Novikov The d-bar approach to approximate inverse scattering at fixed energy in three dimensions , 2005 .

[25]  Jianzhong Su,et al.  Globally accelerated reconstruction algorithm for diffusion tomography with continuous-wave source in an arbitrary convex shape domain. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Michael V. Klibanov,et al.  Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm , 2010 .

[27]  Abdigany D. Satybaev,et al.  Direct Methods of Solving Multidimensional Inverse Hyperbolic Problems , 2004 .

[28]  J L Mueller,et al.  2D D-bar reconstructions of human chest and tank data using an improved approximation to the scattering transform. , 2010, Physiological measurement.

[29]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[30]  Michael V. Klibanov,et al.  The philosophy of the approximate global convergence for multidimensional coefficient inverse problems , 2012 .

[31]  Hanli Liu,et al.  A globally accelerated numerical method for optical tomography with continuous wave source , 2008, 0809.3910.

[32]  Michael V. Klibanov,et al.  A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem , 2010 .

[33]  M. M. Lavrentʹev,et al.  Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .

[34]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[35]  Michael V. Klibanov,et al.  Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems , 2012 .

[36]  Yuriy A. Gryazin,et al.  Numerical Solution of a Subsurface Imaging Inverse Problem , 2001, SIAM J. Appl. Math..

[37]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[38]  L. Debnath Tables of Integral Transforms , 2012 .

[39]  Jutta Bikowski,et al.  Direct numerical reconstruction of conductivities in three dimensions using scattering transforms , 2010, 1003.3764.

[40]  Valentin A. Burov,et al.  Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem , 2009 .

[41]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[42]  Michael V. Klibanov,et al.  Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem , 2010 .

[43]  Laurent Bourgeois,et al.  Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation , 2006 .

[44]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[45]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[46]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[47]  Valentin A. Burov,et al.  Solution of the three-dimensional acoustic inverse scattering problem. The modified Novikov algorithm , 2008 .

[48]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[49]  David Isaacson,et al.  Inverse problems for a perturbed dissipative half-space , 1995 .

[50]  Jacques-Louis Lions,et al.  The method of quasi-reversibility : applications to partial differential equations , 1969 .

[51]  Michael V. Klibanov,et al.  Global convergence for a 1-D inverse problem with application to imaging of land mines , 2010 .

[52]  A. Bakushinsky,et al.  Iterative Methods for Approximate Solution of Inverse Problems , 2005 .

[53]  Michael V. Klibanov,et al.  Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess , 2011 .

[54]  V. Romanov Inverse problems of mathematical physics , 1986 .

[55]  Michael V. Klibanov,et al.  Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem , 2010 .

[56]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[57]  Michael V. Klibanov,et al.  The Quasi-Reversibility Method for Thermoacoustic Tomography in a Heterogeneous Medium , 2007, SIAM J. Sci. Comput..

[58]  Valentin A. Burov,et al.  Reconstruction of Fine-Scale Structure of Acoustical Scatterer on Large-Scale Contrast Background , 2002 .

[59]  Almerico Murli,et al.  Numerical Mathematics and Advanced Applications , 2003 .

[60]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[61]  Michael V. Klibanov,et al.  A Globally Convergent Numerical Method for a Coefficient Inverse Problem , 2008, SIAM J. Sci. Comput..

[62]  Michael V. Klibanov,et al.  A computational quasi-reversiblility method for Cauchy problems for Laplace's equation , 1991 .