Strong room temperature exciton photoluminescence in electrochemically deposited Cu2O films

[1]  W. Langbein,et al.  Rydberg excitons in synthetic cuprous oxide Cu2O , 2020, Physical Review Materials.

[2]  Raphael Nagao,et al.  Influence of the Ligands in Cu(II) Complexes on the Oscillatory Electrodeposition of Cu/Cu2O , 2020 .

[3]  M. Izaki,et al.  Light-Irradiated Electrochemical Direct Construction of Cu2O/CuO Bilayers by Switching Cathodic/Anodic Polarization in Copper(II)–Tartrate Complex Aqueous Solution , 2019, ACS omega.

[4]  O. Zelaya-Ángel,et al.  Photoluminescence of Cu2O nanostructured in stressed thin films induced by temperature , 2019, Journal of Luminescence.

[5]  Do‐Heyoung Kim,et al.  Cu2O as an emerging photocathode for solar water splitting - A status review , 2019, International Journal of Hydrogen Energy.

[6]  Teun-Teun Kim,et al.  Single-crystalline Cu2O thin films of optical quality as obtained by the oxidation of single-crystal Cu thin films at low temperature , 2019, APL Materials.

[7]  V. Zwiller,et al.  Cu$_2$O Microcrystals Grown on Silicon as Platform for Quantum-Degenerate Excitons and Rydberg States , 2019, 1902.01853.

[8]  Jr-hau He,et al.  Enhancing the Photoelectric Performance of Photodetectors Based on Metal Oxide Semiconductors by Charge‐Carrier Engineering , 2019, Advanced Functional Materials.

[9]  Xiaosheng Fang,et al.  Photoelectric Detectors Based on Inorganic p‐Type Semiconductor Materials , 2018, Advanced materials.

[10]  Anders Hagfeldt,et al.  Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices , 2018, Nature Catalysis.

[11]  A. Maity,et al.  Eu modified Cu2O thin films: Significant enhancement in efficiency of photoelectrochemical processes through suppression of charge carrier recombination , 2018 .

[12]  C. Liu,et al.  A Cuprous Oxide Thin Film Non-Enzymatic Glucose Sensor Using Differential Pulse Voltammetry and Other Voltammetry Methods and a Comparison to Different Thin Film Electrodes on the Detection of Glucose in an Alkaline Solution , 2018, Biosensors.

[13]  N. Lewis,et al.  Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu2O , 2017 .

[14]  Michael Grätzel,et al.  Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. , 2016, Nano letters.

[15]  S. Ai,et al.  Green and gentle synthesis of Cu2O nanoparticles using lignin as reducing and capping reagent with antibacterial properties , 2016 .

[16]  R. Amal,et al.  Electrodeposited Cu2O as Photoelectrodes with Controllable Conductivity Type for Solar Energy Conversion , 2015 .

[17]  W. Regan,et al.  Metal insulator semiconductor solar cell devices based on a Cu2O substrate utilizing h-BN as an insulating and passivating layer , 2015 .

[18]  Guofu Ma,et al.  Temperature sensitive optical properties of exciton and room-temperature visible light emission from disordered Cu2O nanowires , 2014 .

[19]  P. Klar,et al.  Correlation of intrinsic point defects and the Raman modes of cuprous oxide , 2014 .

[20]  Xiaolong Du,et al.  Engineering of optically defect free Cu2O enabling exciton luminescence at room temperature , 2013 .

[21]  A. Dinia,et al.  Growth and characterization of electrodeposited Cu2O thin films , 2013 .

[22]  Y. Hsu,et al.  Photocurrent Enhancement of P-Cu2O Thin Film Achievedby Thermal Annealing , 2013 .

[23]  Jan C. Brauer,et al.  Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy , 2012 .

[24]  Xinyi Zhang,et al.  Synergy effect over electrodeposited submicron Cu2O films in photocatalytic degradation of methylene blue , 2012 .

[25]  Chuanjin J. Tian,et al.  Electrodeposition of Cu2O films and their photoelectrochemical properties , 2011 .

[26]  J. C. Ballesteros,et al.  Electrodeposition of Copper from Non-Cyanide Alkaline Solution Containing Tartrate , 2011, International Journal of Electrochemical Science.

[27]  Chunming Wang,et al.  Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application , 2010 .

[28]  Kunhee Han,et al.  Characterization of Cl-doped n-type Cu2O prepared by electrodeposition , 2010 .

[29]  N. Swami,et al.  Photoelectrochemical Stability of Electrodeposited Cu2O Films , 2010 .

[30]  M. Galván-Arellano,et al.  Photoluminescence and X-ray diffraction studies on Cu2O , 2009 .

[31]  J. Ramos-Barrado,et al.  Low-Temperature Electrodeposition of Cu2O Thin Films: Modulation of Micro-Nanostructure by Modifying the Applied Potential and Electrolytic Bath pH , 2009 .

[32]  X. Fang,et al.  Controlled Growth of One-Dimensional Oxide Nanomaterials , 2009 .

[33]  H. Teng,et al.  Elucidating the Conductivity-Type Transition Mechanism of p-Type Cu2O Films from Electrodeposition , 2009 .

[34]  P. Kamath,et al.  Electrochemical deposition of Cu2O on stainless steel substrates: Promotion and suppression of oriented crystallization , 2008 .

[35]  H. Teng,et al.  Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3 , 2008 .

[36]  Krishnan Rajeshwar,et al.  Photocatalytic production of hydrogen from electrodeposited p-Cu2O film and sacrificial electron donors , 2007 .

[37]  J. Ramos-Barrado,et al.  Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries , 2007 .

[38]  E. Streltsov,et al.  Electrodeposition of Te onto monocrystalline n- and p-Si(1 0 0) wafers , 2007 .

[39]  E. Streltsov,et al.  Electrochemical deposition of PbTe onto n-Si(100) wafers , 2007 .

[40]  Mira Todorova,et al.  Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation , 2007 .

[41]  W. Siripala,et al.  Photoluminescence characterization of polycrystalline n-type Cu2O films , 2006 .

[42]  R. P. Wijesundera,et al.  Growth and characterisation of potentiostatically electrodeposited Cu2O and Cu thin films , 2006 .

[43]  M. Siegfried,et al.  Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution , 2004 .

[44]  Y. Liu,et al.  The structural and optical properties of Cu2O films electrodeposited on different substrates , 2004 .

[45]  P. Poizot,et al.  An Electrochemical Method for CuO Thin Film Deposition from Aqueous Solution , 2003 .

[46]  P. D. Jongh,et al.  Cu2O: Electrodeposition and Characterization , 1999 .

[47]  Jay A. Switzer,et al.  Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crystal Gold(100) , 1999 .

[48]  Yanchun Zhou,et al.  Galvanostatic electrodeposition and microstructure of copper (I) oxide film , 1998 .

[49]  Takayuki Ito,et al.  Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O , 1997 .

[50]  T. Goldman,et al.  Electrochemical Deposition of Copper(I) Oxide Films , 1996 .

[51]  H. Hagemann,et al.  Raman spectra of single crystal CuO , 1990 .

[52]  B. Rai,et al.  Cu2O solar cells: A review , 1988 .

[53]  J. Weiner,et al.  Time-resolved hot luminescence and resonant Raman scattering: Cu2O revisited , 1984 .

[54]  S. V. Gastev,et al.  Relaxed excitons in Cu2O , 1982 .

[55]  A. Compaan,et al.  Raman-scattering study of ion-implantation-produced damage in Cu 2 O , 1975 .

[56]  S. Porto,et al.  Symmetry-Forbidden Resonant Raman Scatt ering in Cu 2 O , 1973 .