Evaluating potential sugar food sources from the olive grove agroecosystems for Prays oleae parasitoid Chelonus elaeaphilus

ABSTRACT Chelonus elaeaphilus Silvestri (Hymenoptera: Braconidae) is a host-specific parasitoid of the olive moth, Prays oleae (Bernard), that can cause parasitism rates of up to 80% in Mediterranean olive groves. A laboratory study was carried out to assess the potential of sugars provided by wild plant species in olive grove agroecosystem to enhance the fitness of C. elaeaphilus. Insects were reared in a climate-controlled chamber at 25 ± 2°C, 60 ± 5% relative humidity (RH) with a photoperiod of 16:8 (L:D) h. Five naturally occurring wild plant nectar sugars (sucrose, fructose, glucose, maltose and mannose) were tested for their effect on insect longevity. The nectar sugar content of sucrose, fructose and glucose in 12 selected olive grove agroecosystem plant species was analysed and categorised on the basis of sugar ratios. Female insect longevity was increased when they were fed on both sucrose and glucose compared to either maltose or fructose, suggesting that sucrose-dominant nectars would benefit this parasitoid. Sucrose was predominant in the nectar of five of the studied plant species (Silene gallica, Borago officinalis, Echium plantagineum, Lavandula stoechas and Lonicera hispânica). The results are discussed in terms of potential enhancement of the biological control of P. oleae.

[1]  A. Crespí,et al.  Evaluation of native plant flower characteristics for conservation biological control of Prays oleae , 2016, Bulletin of Entomological Research.

[2]  F. Wäckers,et al.  Pick and Mix: Selecting Flowering Plants to Meet the Requirements of Target Biological Control Insects , 2012 .

[3]  M. Porcel,et al.  Biological and behavioral effects of kaolin particle film on larvae and adults of Chrysoperla carnea (Neuroptera: Chrysopidae) , 2011 .

[4]  S. Wratten,et al.  Nectar to improve parasitoid fitness in biological control: Does the sucrose:hexose ratio matter? , 2010 .

[5]  Qing-wen Zhang,et al.  Effects of six sugars on the longevity, fecundity and nutrient reserves of Microplitis mediator , 2010 .

[6]  J. Ellers,et al.  Lack of lipogenesis in parasitoids: a review of physiological mechanisms and evolutionary implications. , 2008, Journal of insect physiology.

[7]  T. Petanidou Ecological and evolutionary aspects of floral nectars in Mediterranean habitats , 2007 .

[8]  S. Wratten,et al.  The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent , 2006 .

[9]  H. Fadamiro,et al.  Comparing the effects of five naturally occurring monosaccharide and oligosaccharide sugars on longevity and carbohydrate nutrient levels of a parasitic phorid fly, Pseudacteon tricuspis , 2006 .

[10]  F. Wäckers,et al.  Sugar convertibility in the parasitoid Cotesia glomerata (Hymenoptera: Braconidae). , 2005, Archives of insect biochemistry and physiology.

[11]  T. Petanidou Sugars in Mediterranean Floral Nectars: An Ecological and Evolutionary Approach , 2005, Journal of Chemical Ecology.

[12]  M. Cornelius,et al.  Acceptability of different sugars and oils to three tropical ant species (Hymen., Formicidae) , 1996, Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz.

[13]  Jana C. Lee,et al.  Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp , 2004 .

[14]  F. Wäckers THE EFFECT OF FOOD SUPPLEMENTS ON PARASITOID-HOST DYNAMICS , 2003 .

[15]  Jana C. Lee,et al.  Use of behavioural and life-history studies to understand the effects of habitat manipulation. , 2003 .

[16]  V. Larraz,et al.  Strategic use of nectar sources to boost biological control , 2003 .

[17]  F. Wäckers A comparison of nectar- and honeydew sugars with respect to their utilization by the hymenopteran parasitoid Cotesia glomerata. , 2001, Journal of insect physiology.

[18]  H. Fadamiro,et al.  Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp , 2000 .

[19]  D. Andow,et al.  Larval Crowding and Adult Nutrition Effects on Longevity and Fecundity of Female Trichogramma nubilale Ertle & Davis (Hymenoptera: Trichogrammatidae) , 1998 .

[20]  M. Jervis Functional and evolutionary aspects of mouthpart structure in parasitoid wasps , 1998 .

[21]  Křivan,et al.  Searching for Food or Hosts: The Influence of Parasitoids Behavior on Host-Parasitoid Dynamics , 1997, Theoretical population biology.

[22]  I. Redolfi,et al.  Interacción entre Chelonus eleaphilus (Hymenoptera, Braconidae) y Prays oleae (Lepidoptera, Plutellidae) , 1997 .

[23]  A. Snow,et al.  Floral Biology , 1996, Springer US.

[24]  E. Grafius,et al.  Wildflowers as Nectar Sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a Parasitoid of Diamondback Moth (Lepidoptera: Yponomeutidae) , 1995 .

[25]  H. Dawah,et al.  Flower-visiting by hymenopteran parasitoids , 1993 .

[26]  Manuel Civantos López-Villalta,et al.  Lucha integrada: Control integrado en el olivar español y su influencia en la calidad , 1993 .

[27]  P. Katsoyannos,et al.  Olive pests and their control in the Near East. , 1992 .

[28]  R. Carlson,et al.  Ichneumonidae (Hymenoptera) Using Extrafloral Nectar of Faba Bean (Vicia Faba L., Fabaceae) in Massachusetts , 1989 .

[29]  Caroline Fonta,et al.  Rôle des nectars de tournesol dans le comportement des insectes pollinisateurs et analyse qualitative et quantitative des éléments glucidiques de ces sécrétions , 1985 .

[30]  H. G. Baker,et al.  Floral nectar sugar constituents in relation to pollinator type , 1983 .

[31]  M. Percival CHAPTER II – THE BIOLOGY OF THE FLORAL PARTS , 1965 .