Ordinal association rules for error identification in data sets

A new extension of the Boolean association rules, ordinal association rules, that incorporates ordinal relationships among data items, is introduced. One use for ordinal rules is to identify possible errors in data. A method that finds these rules and identifies potential errors in data is proposed.

[1]  Aidong Zhang,et al.  FindOut: Finding Outliers in Very Large Datasets , 2002, Knowledge and Information Systems.

[2]  Ali Khenchaf,et al.  Generalizing Association Rules to Ordinal Rules , 2000, IQ.

[3]  Laks V. S. Lakshmanan,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998, SIGMOD '98.

[4]  Sridhar Ramaswamy,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.

[5]  Renée J. Miller,et al.  Association rules over interval data , 1997, SIGMOD '97.

[6]  Ken Orr,et al.  Data quality and systems theory , 1998, CACM.

[7]  Yehuda Lindell,et al.  A Statistical Theory for Quantitative Association Rules , 1999, KDD.

[8]  Christos Faloutsos,et al.  Ratio Rules: A New Paradigm for Fast, Quantifiable Data Mining , 1998, VLDB.

[9]  Yehuda Lindell,et al.  A Statistical Theory for Quantitative Association Rules , 1999, KDD '99.

[10]  Thomas Redman,et al.  The impact of poor data quality on the typical enterprise , 1998, CACM.

[11]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[12]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[13]  Rajeev Rastogi,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD 2000.

[14]  Joseph M. Hellerstein,et al.  Potter's Wheel: An Interactive Data Cleaning System , 2001, VLDB.

[15]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[16]  Thomas Redman,et al.  Data quality for the information age , 1996 .

[17]  Diane M. Strong,et al.  Beyond Accuracy: What Data Quality Means to Data Consumers , 1996, J. Manag. Inf. Syst..

[18]  Dennis Shasha,et al.  An extensible Framework for Data Cleaning , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[19]  HanJiawei,et al.  Exploratory mining and pruning optimizations of constrained associations rules , 1998 .

[20]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[21]  Andrian Marcus,et al.  Data cleansing: beyond integrity checking , 2000 .

[22]  Ramakrishnan Srikant,et al.  Mining Association Rules with Item Constraints , 1997, KDD.

[23]  Veda C. Storey,et al.  A Framework for Analysis of Data Quality Research , 1995, IEEE Trans. Knowl. Data Eng..

[24]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .