Recombination in Vertebrate Cells Double-Strand Breaks by Homologous Radiation-and Enzyme-Induced DNA Fanconi Anemia FANCG Protein in Mitigating

10.1128/MCB.23.15.5421-5430.2003. 2003, 23(15):5421. DOI: Mol. Cell. Biol. Minoru Takata Mitsune Tanimoto, Mine Harada, Larry H. Thompson and Hiroshi Arakawa, Jane E. Lamerdin, Jean-Marie Buerstedde, Kazuhiko Yamamoto, Masamichi Ishiai, Nobuko Matsushita, Recombination in Vertebrate Cells Double-Strand Breaks by Homologous Radiationand Enzyme-Induced DNA Fanconi Anemia FANCG Protein in Mitigating

[1]  B. Fox,et al.  Repair of DNA interstrand crosslinks after busulphan , 2004, Cancer Chemotherapy and Pharmacology.

[2]  D. Schild,et al.  Recombinational DNA repair and human disease. , 2002, Mutation research.

[3]  Tom L. Blundell,et al.  Insights into DNA recombination from the structure of a RAD51–BRCA2 complex , 2002, Nature.

[4]  Wen-Hwa Lee,et al.  BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. , 2002, Science.

[5]  H. Joenje,et al.  Impaired DNA damage-induced nuclear Rad51 foci formation uniquely characterizes Fanconi anemia group D1 , 2002, Oncogene.

[6]  I. Demuth,et al.  Attenuation of the formation of DNA-repair foci containing RAD51 in Fanconi anaemia. , 2002, Carcinogenesis.

[7]  G. Stewart,et al.  The two faces of BRCA2, a FANCtastic discovery. , 2002, Molecular cell.

[8]  Hans Joenje,et al.  FANCE: the link between Fanconi anaemia complex assembly and activity , 2002, The EMBO journal.

[9]  Hans Joenje,et al.  Biallelic Inactivation of BRCA2 in Fanconi Anemia , 2002, Science.

[10]  Bo Xu,et al.  Convergence of the Fanconi Anemia and Ataxia Telangiectasia Signaling Pathways , 2002, Cell.

[11]  F. Hanaoka,et al.  Molecular biology of Fanconi anaemia—an old problem, a new insight , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  M. Lieber,et al.  Oxygen Metabolism Causes Chromosome Breaks and Is Associated with the Neuronal Apoptosis Observed in DNA Double-Strand Break Repair Mutants , 2002, Current Biology.

[13]  H. Joenje,et al.  Reduced fertility and hypersensitivity to mitomycin C characterize Fancg/Xrcc9 null mice. , 2002, Human molecular genetics.

[14]  Ashok R Venkitaraman,et al.  Cancer Susceptibility and the Functions of BRCA1 and BRCA2 , 2002, Cell.

[15]  S. Kajigaya,et al.  The FANCG Fanconi anemia protein interacts with CYP2E1: possible role in protection against oxidative DNA damage. , 2002, Carcinogenesis.

[16]  S C West,et al.  Identification and purification of two distinct complexes containing the five RAD51 paralogs. , 2001, Genes & development.

[17]  J. Albala,et al.  Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange. , 2001, Genes & development.

[18]  A. D’Andrea,et al.  The Chinese hamster FANCG/XRCC9 mutant NM3 fails to express the monoubiquitinated form of the FANCD2 protein, is hypersensitive to a range of DNA damaging agents and exhibits a normal level of spontaneous sister chromatid exchange. , 2001, Carcinogenesis.

[19]  D. Leach,et al.  Recombination at double-strand breaks and DNA ends: conserved mechanisms from phage to humans. , 2001, Molecular cell.

[20]  B. Seed,et al.  Targeted disruption of the murine Fanconi anemia gene, Fancg/Xrcc9. , 2001, Blood.

[21]  P. Dhar,et al.  Genetic Analysis of the DNA-dependent Protein Kinase Reveals an Inhibitory Role of Ku in Late S–G2 Phase DNA Double-strand Break Repair* , 2001, The Journal of Biological Chemistry.

[22]  K. Ikeda,et al.  Fanconi anemia protein, FANCA, associates with BRG1, a component of the human SWI/SNF complex. , 2001, Human molecular genetics.

[23]  P. Dhar,et al.  Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells , 2001, The EMBO journal.

[24]  A. D’Andrea,et al.  Fanconi anemia and DNA repair. , 2001, Human molecular genetics.

[25]  M. Takata,et al.  Homologous DNA recombination in vertebrate cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G. Kupfer,et al.  Fanconi Anemia Proteins Localize to Chromatin and the Nuclear Matrix in a DNA Damage- and Cell Cycle-regulated Manner* , 2001, The Journal of Biological Chemistry.

[27]  D. Schild,et al.  Homologous recombinational repair of DNA ensures mammalian chromosome stability. , 2001, Mutation research.

[28]  Hans Joenje,et al.  The emerging genetic and molecular basis of Fanconi anaemia , 2001, Nature Reviews Genetics.

[29]  M. Hoatlin,et al.  Foci on fanconi. , 2001, Trends in molecular medicine.

[30]  D. Schild,et al.  Mutants of the Five Rad51 Paralogs Recombinational Repair in Knockout Chromosome Instability and Defective , 2022 .

[31]  J. Hoeijmakers,et al.  Chromosomal stability and the DNA double-stranded break connection , 2001, Nature Reviews Genetics.

[32]  K. Khanna,et al.  DNA double-strand breaks: signaling, repair and the cancer connection , 2001, Nature Genetics.

[33]  S. Ganesan,et al.  Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. , 2001, Molecular cell.

[34]  S C West,et al.  Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. , 2001, Molecular cell.

[35]  M. Takata,et al.  Reverse genetic studies of homologous DNA recombination using the chicken B-lymphocyte line, DT40. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  C. Mathew,et al.  Spectrum of mutations in the Fanconi anaemia group G gene, FANCG/XRCC9 , 2000, European Journal of Human Genetics.

[37]  A. D’Andrea,et al.  The fanconi anemia proteins FANCA and FANCG stabilize each other and promote the nuclear accumulation of the Fanconi anemia complex. , 2000, Blood.

[38]  J. Albala,et al.  The Rad51 Paralog Rad51B Promotes Homologous Recombinational Repair , 2000, Molecular and Cellular Biology.

[39]  M. Jasin,et al.  Sister chromatid gene conversion is a prominent double‐strand break repair pathway in mammalian cells , 2000, The EMBO journal.

[40]  J. Hoeijmakers,et al.  Mouse RAD54 Affects DNA Double-Strand Break Repair and Sister Chromatid Exchange , 2000, Molecular and Cellular Biology.

[41]  M. Lieber,et al.  The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts , 1999, Current Biology.

[42]  B. Koller,et al.  BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a Brca1 transgene , 1999, Oncogene.

[43]  A Zelent,et al.  A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF. , 1999, Blood.

[44]  R. Weichselbaum,et al.  The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis , 1999, Molecular and Cellular Biology.

[45]  B. Koller,et al.  Brca1 controls homology-directed DNA repair. , 1999, Molecular cell.

[46]  M. Jasin,et al.  Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination , 1999, Nature.

[47]  G E Tomlinson,et al.  BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. , 1999, Cancer research.

[48]  Yuko Yamaguchi-Iwai,et al.  Sister Chromatid Exchanges Are Mediated by Homologous Recombination in Vertebrate Cells , 1999, Molecular and Cellular Biology.

[49]  D. Näf,et al.  Fanconi Anemia Proteins FANCA, FANCC, and FANCG/XRCC9 Interact in a Functional Nuclear Complex , 1999, Molecular and Cellular Biology.

[50]  M. Schartl,et al.  300 million years of conserved synteny between chicken Z and human chromosome 9 , 1999, Nature Genetics.

[51]  Hans Joenje,et al.  The Fanconi anaemia group G gene FANCG is identical with XRCC9 , 1998, Nature Genetics.

[52]  Akira Shinohara,et al.  Homologous Recombination, but Not DNA Repair, Is Reduced in Vertebrate Cells Deficient in RAD52 , 1998, Molecular and Cellular Biology.

[53]  Y. Yamaguchi-Iwai,et al.  Homologous recombination and non‐homologous end‐joining pathways of DNA double‐strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells , 1998, The EMBO journal.

[54]  B. Ponder,et al.  Involvement of Brca2 in DNA repair. , 1998, Molecular cell.

[55]  Akira Shinohara,et al.  Rad51‐deficient vertebrate cells accumulate chromosomal breaks prior to cell death , 1998, The EMBO journal.

[56]  J. Albala,et al.  The human XRCC9 gene corrects chromosomal instability and mutagen sensitivities in CHO UV40 cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Hata,et al.  Tyrosine kinases Lyn and Syk regulate B cell receptor‐coupled Ca2+ mobilization through distinct pathways. , 1994, The EMBO journal.

[58]  Jean-Marie Buerstedde,et al.  Increased ratio of targeted to random integration after transfection of chicken B cell lines , 1991, Cell.

[59]  M. Bender,et al.  G2 chromosomal radiosensitivity in Fanconi's anemia. , 1979, Mutation research.

[60]  R. Benz,et al.  Sensitivity to five mutagens in Fanconi's anemia as measured by the micronucleus method. , 1978, Cancer research.

[61]  S. Wolff Sister chromatid exchange. , 1977, Annual review of genetics.

[62]  S. Latt,et al.  Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi's anemia. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Sasaki,et al.  A high susceptibility of Fanconi's anemia to chromosome breakage by DNA cross-linking agents. , 1973, Cancer research.