Mean Field Games: Convergence of a Finite Difference Method

Mean field type models describing the limiting behavior of stochastic differential games as the number of players tends to $+\infty$ have been recently introduced by Lasry and Lions. Numerical methods for the approximation of the stationary and evolutive versions of such models have been proposed by the authors in previous works. Here, convergence theorems for these methods are proved under various assumptions on the coupling operator.

[1]  Yves Achdou,et al.  Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..

[2]  P. Lions,et al.  Quelques remarques sur les problemes elliptiques quasilineaires du second ordre , 1985 .

[3]  Yves Achdou,et al.  Mean Field Games: Numerical Methods for the Planning Problem , 2012, SIAM J. Control. Optim..

[4]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[5]  Pierre-Louis Lions,et al.  Long time average of mean field games , 2012, Networks Heterog. Media.

[6]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[7]  W. Rudin Real and complex analysis , 1968 .

[8]  Fabio Camilli,et al.  A semi-discrete approximation for a first order mean field game problem , 2012, Networks Heterog. Media.

[9]  P. Lions,et al.  Mean field games , 2007 .

[10]  Yves Achdou,et al.  Iterative strategies for solving linearized discrete mean field games systems , 2012, Networks Heterog. Media.

[11]  A. Lachapelle,et al.  COMPUTATION OF MEAN FIELD EQUILIBRIA IN ECONOMICS , 2010 .

[12]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[13]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[14]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[15]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[16]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[17]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[18]  Olivier Gu'eant,et al.  Mean field games equations with quadratic Hamiltonian: a specific approach , 2011, 1106.3269.

[19]  Olivier Guéant,et al.  New numerical methods for mean field games with quadratic costs , 2012, Networks Heterog. Media.

[20]  Thierry Gallouët,et al.  Finite volumes and nonlinear diffusion equations , 1998 .