Analysis of Multi layer Perceptron Network

In this paper, we introduce the multilayer Perceptron (feedforward) neural network (MLPs) and used it for a function approximation. For the training of MLP, we have used back propagation algorithm principle. The main purpose of this paper lies in changing the number of hidden layers of MLP for achieving minimum value of mean square error.

[1]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[2]  Xiao Zhi Gao,et al.  Power prediction in mobile communication systems using an optimal neural-network structure , 1997, IEEE Trans. Neural Networks.

[3]  Ahmadreza Khoogar,et al.  A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems , 2007 .

[4]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[5]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[6]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[7]  José Muñoz-Pérez,et al.  Design and analysis of maximum Hopfield networks , 2001, IEEE Trans. Neural Networks.

[8]  DeLiang Wang,et al.  Anticipation-based temporal pattern generation , 1995, IEEE Trans. Syst. Man Cybern..

[9]  Katherine D. Casebier,et al.  The University of Texas at Arlington's Virtual Reference Service , 2006 .

[10]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[11]  Jamal M. Nazzal,et al.  Multilayer Perceptron Neural Network (MLPs) For Analyzing the Properties of Jordan Oil Shale , 2008 .

[12]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[13]  C. V. D. Malsburg,et al.  Frank Rosenblatt: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms , 1986 .