Associative Copulas: A Survey
暂无分享,去创建一个
Juan Fernández-Sánchez | José Juan Quesada-Molina | Manuel Úbeda-Flores | J. Quesada-Molina | Manuel Úbeda-Flores | J. Fernández-Sánchez
[1] Radko Mesiar,et al. Asymmetric semilinear copulas , 2007, Kybernetika.
[2] Fabrizio Durante,et al. Componentwise Concave Copulas and Their Asymmetry , 2009, Kybernetika.
[3] E. Klement,et al. Measures of non-exchangeability for bivariate random vectors , 2010 .
[4] José Juan Quesada-Molina,et al. Kendall distribution functions and associative copulas , 2009, Fuzzy Sets Syst..
[5] Joan Torrens,et al. Copula-like operations on finite settings , 2005, IEEE Transactions on Fuzzy Systems.
[6] Christian Genest,et al. On the multivariate probability integral transformation , 2001 .
[7] Juan Fernández-Sánchez,et al. Characterization of all copulas associated with non-continuous random variables , 2012, Fuzzy Sets Syst..
[8] Radko Mesiar,et al. Problems on triangular norms and related operators , 2004, Fuzzy Sets Syst..
[9] Juan Fernández-Sánchez,et al. Baire category results for exchangeable copulas , 2016, Fuzzy Sets Syst..
[10] E. Luciano,et al. Copula Methods in Finance: Cherubini/Copula , 2004 .
[11] W. Trutschnig,et al. Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and Iterated Function Systems , 2015 .
[12] Roger B. Nelsen,et al. Some properties of Schur-constant survival models and their copulas , 2005 .
[13] An application of Kendall distributions and alternative dependence measures: SPX vs. VIX , 2008 .
[14] M. Fréchet. Sur les tableaux de correlation dont les marges sont donnees , 1951 .
[15] Alexander J. McNeil,et al. Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.
[16] E Alvoni. QUASI-CONCAVE COPULAS, ASYMMETRY AND TRANSFORMATIONS , 2007 .
[17] János C. Fodor,et al. Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..
[18] Anna Kolesárová,et al. Associative n - dimensional copulas , 2011, Kybernetika.
[19] M. J. Frank,et al. Associative Functions: Triangular Norms And Copulas , 2006 .
[20] V. Schmitz,et al. Revealing the dependence structure between X(1) and X(n) , 2004 .
[21] Massimo Marinacci,et al. Ultramodular Functions , 2005, Math. Oper. Res..
[22] Joan Torrens,et al. Sklar's Theorem in Finite Settings , 2007, IEEE Transactions on Fuzzy Systems.
[23] F. Durante,et al. Non-exchangeability of negatively dependent random variables , 2010 .
[24] Radko Mesiar,et al. L ∞ -measure of non-exchangeability for bivariate extreme value and Archimax copulas , 2010 .
[25] R. Mesiar,et al. Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .
[26] Radko Mesiar,et al. Ordinal sums and idempotents of copulas , 2010 .
[27] B. Schweizer,et al. On Nonparametric Measures of Dependence for Random Variables , 1981 .
[28] José M. González-Barrios. Statistical aspects of associativity for copulas , 2010, Kybernetika.
[29] Nikolai Kolev,et al. An Application of Kendall Distributions , 2005 .
[30] R. Mesiar,et al. Ultramodularity and copulas , 2014 .
[31] C. Alsina. ON ASSOCIATIVE COPULAS UNIFORMLY CLOSE , 1988 .
[32] Martin T. Wells,et al. Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .
[33] Claudi Alsina,et al. Problems on associative functions , 2003 .
[34] Roger B. Nelsen,et al. The Bertino Family of Copulas , 2002 .
[35] José M. González-Barrios,et al. Symmetries of random discrete copulas , 2008, Kybernetika.
[36] B. Finetti,et al. Sulle stratificazioni convesse , 1949 .
[37] Berthold Schweizer,et al. Probabilistic Metric Spaces , 2011 .
[38] Bruno Rémillard,et al. On Kendall's Process , 1996 .
[39] Anna Kolesárová,et al. Quasi-copulas and copulas on a discrete scale , 2006, Soft Comput..
[40] Manuel Úbeda-Flores,et al. Best-possible bounds on the set of copulas with given degree of non-exchangeability , 2014 .
[41] C. Genest,et al. Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .
[42] Christian Genest,et al. Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .
[43] Piotr Mikusiński,et al. A remark on associative copulas , 1999 .
[44] G. Mayor,et al. Triangular norms on discrete settings , 2005 .
[45] Francesc Esteva,et al. Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .
[46] Roger B. Nelsen,et al. Extremes of nonexchangeability , 2007 .
[47] Gleb Beliakov,et al. Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.
[48] Radko Mesiar,et al. How non-symmetric can a copula be? , 2006 .
[49] J. C. Oxtoby,et al. Measure and Category: A Survey of the Analogies between Topological and Measure Spaces , 1971 .
[50] M. J. Frank. On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .
[51] Holger Dette,et al. A test for Archimedeanity in bivariate copula models , 2011, J. Multivar. Anal..
[52] Milan Petrík,et al. Associativity of triangular norms characterized by the geometry of their level sets , 2012, Fuzzy Sets Syst..
[53] Claudi Alsina. On Schur-Concave t-Norms and Triangle Functions , 1984 .
[54] W. Trutschnig. On a strong metric on the space of copulas and its induced dependence measure , 2011 .
[55] R. Mesiar,et al. Aggregation operators: properties, classes and construction methods , 2002 .
[56] E. Gumbel. Bivariate Exponential Distributions , 1960 .
[57] R. Barlow,et al. Similarity as a Probabilistic Characteristic of Aging , 1993 .
[58] Fabrizio Durante,et al. Copula Theory and Its Applications , 2010 .
[59] P. Mostert,et al. On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .
[60] Radko Mesiar,et al. Open problems posed at the Tenth International Conference on Fuzzy Set Theory and Applications (FSTA 2010, Liptovský Ján, Slovakia) , 2010, Kybernetika.
[61] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[62] Joan Torrens,et al. On a class of operators for expert systems , 1993, Int. J. Intell. Syst..
[63] Karl Friedrich Siburg,et al. Symmetry of functions and exchangeability of random variables , 2011 .
[64] R. Moynihan,et al. On τT semigroups of probability distribution functions II , 1977 .
[65] P. Embrechts,et al. Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .
[66] M. J. Frank. On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .
[67] Fabio Spizzichino,et al. Kendall distributions and level sets in bivariate exchangeable survival models , 2009, Inf. Sci..
[68] Fabrizio Durante. Solution of an open problem for associative copulas , 2005, Fuzzy Sets Syst..
[69] Fabrizio Durante,et al. A weakening of Schur-concavity for copulas , 2007, Fuzzy Sets Syst..
[70] José Juan Quesada-Molina,et al. Distribution functions of copulas: a class of bivariate probability integral transforms , 2001 .
[71] José Juan Quesada-Molina,et al. Kendall distribution functions , 2003 .
[72] Radko Mesiar,et al. Uniform approximation of associative copulas by strict and non-strict copulas , 2001 .