Associative Copulas: A Survey

Copulas—functions that join multivariate distribution functions to their one-dimensional margins—are special cases of binary 1-Lipschitz aggregation functions, commonly used in aggregation processes. Here we consider a significant class of copulas: Associative copulas. We explore briefly the subclass of Archimedean copulas, and some of the properties and applications of associative copulas, such as the simultaneous associativity, the Kendall distribution functions, topological aspects, etc. Finally, some open problems are posed.

[1]  Radko Mesiar,et al.  Asymmetric semilinear copulas , 2007, Kybernetika.

[2]  Fabrizio Durante,et al.  Componentwise Concave Copulas and Their Asymmetry , 2009, Kybernetika.

[3]  E. Klement,et al.  Measures of non-exchangeability for bivariate random vectors , 2010 .

[4]  José Juan Quesada-Molina,et al.  Kendall distribution functions and associative copulas , 2009, Fuzzy Sets Syst..

[5]  Joan Torrens,et al.  Copula-like operations on finite settings , 2005, IEEE Transactions on Fuzzy Systems.

[6]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[7]  Juan Fernández-Sánchez,et al.  Characterization of all copulas associated with non-continuous random variables , 2012, Fuzzy Sets Syst..

[8]  Radko Mesiar,et al.  Problems on triangular norms and related operators , 2004, Fuzzy Sets Syst..

[9]  Juan Fernández-Sánchez,et al.  Baire category results for exchangeable copulas , 2016, Fuzzy Sets Syst..

[10]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[11]  W. Trutschnig,et al.  Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and Iterated Function Systems , 2015 .

[12]  Roger B. Nelsen,et al.  Some properties of Schur-constant survival models and their copulas , 2005 .

[13]  An application of Kendall distributions and alternative dependence measures: SPX vs. VIX , 2008 .

[14]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[15]  Alexander J. McNeil,et al.  Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions , 2009, 0908.3750.

[16]  E Alvoni QUASI-CONCAVE COPULAS, ASYMMETRY AND TRANSFORMATIONS , 2007 .

[17]  János C. Fodor,et al.  Smooth associative operations on finite ordinal scales , 2000, IEEE Trans. Fuzzy Syst..

[18]  Anna Kolesárová,et al.  Associative n - dimensional copulas , 2011, Kybernetika.

[19]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[20]  V. Schmitz,et al.  Revealing the dependence structure between X(1) and X(n) , 2004 .

[21]  Massimo Marinacci,et al.  Ultramodular Functions , 2005, Math. Oper. Res..

[22]  Joan Torrens,et al.  Sklar's Theorem in Finite Settings , 2007, IEEE Transactions on Fuzzy Systems.

[23]  F. Durante,et al.  Non-exchangeability of negatively dependent random variables , 2010 .

[24]  Radko Mesiar,et al.  L ∞ -measure of non-exchangeability for bivariate extreme value and Archimax copulas , 2010 .

[25]  R. Mesiar,et al.  Aggregation Functions (Encyclopedia of Mathematics and its Applications) , 2009 .

[26]  Radko Mesiar,et al.  Ordinal sums and idempotents of copulas , 2010 .

[27]  B. Schweizer,et al.  On Nonparametric Measures of Dependence for Random Variables , 1981 .

[28]  José M. González-Barrios Statistical aspects of associativity for copulas , 2010, Kybernetika.

[29]  Nikolai Kolev,et al.  An Application of Kendall Distributions , 2005 .

[30]  R. Mesiar,et al.  Ultramodularity and copulas , 2014 .

[31]  C. Alsina ON ASSOCIATIVE COPULAS UNIFORMLY CLOSE , 1988 .

[32]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[33]  Claudi Alsina,et al.  Problems on associative functions , 2003 .

[34]  Roger B. Nelsen,et al.  The Bertino Family of Copulas , 2002 .

[35]  José M. González-Barrios,et al.  Symmetries of random discrete copulas , 2008, Kybernetika.

[36]  B. Finetti,et al.  Sulle stratificazioni convesse , 1949 .

[37]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[38]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[39]  Anna Kolesárová,et al.  Quasi-copulas and copulas on a discrete scale , 2006, Soft Comput..

[40]  Manuel Úbeda-Flores,et al.  Best-possible bounds on the set of copulas with given degree of non-exchangeability , 2014 .

[41]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[42]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[43]  Piotr Mikusiński,et al.  A remark on associative copulas , 1999 .

[44]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[45]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[46]  Roger B. Nelsen,et al.  Extremes of nonexchangeability , 2007 .

[47]  Gleb Beliakov,et al.  Aggregation Functions: A Guide for Practitioners , 2007, Studies in Fuzziness and Soft Computing.

[48]  Radko Mesiar,et al.  How non-symmetric can a copula be? , 2006 .

[49]  J. C. Oxtoby,et al.  Measure and Category: A Survey of the Analogies between Topological and Measure Spaces , 1971 .

[50]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[51]  Holger Dette,et al.  A test for Archimedeanity in bivariate copula models , 2011, J. Multivar. Anal..

[52]  Milan Petrík,et al.  Associativity of triangular norms characterized by the geometry of their level sets , 2012, Fuzzy Sets Syst..

[53]  Claudi Alsina On Schur-Concave t-Norms and Triangle Functions , 1984 .

[54]  W. Trutschnig On a strong metric on the space of copulas and its induced dependence measure , 2011 .

[55]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[56]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[57]  R. Barlow,et al.  Similarity as a Probabilistic Characteristic of Aging , 1993 .

[58]  Fabrizio Durante,et al.  Copula Theory and Its Applications , 2010 .

[59]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[60]  Radko Mesiar,et al.  Open problems posed at the Tenth International Conference on Fuzzy Set Theory and Applications (FSTA 2010, Liptovský Ján, Slovakia) , 2010, Kybernetika.

[61]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[62]  Joan Torrens,et al.  On a class of operators for expert systems , 1993, Int. J. Intell. Syst..

[63]  Karl Friedrich Siburg,et al.  Symmetry of functions and exchangeability of random variables , 2011 .

[64]  R. Moynihan,et al.  On τT semigroups of probability distribution functions II , 1977 .

[65]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[66]  M. J. Frank On the simultaneous associativity ofF(x, y) andx+y−F(x, y) , 1978 .

[67]  Fabio Spizzichino,et al.  Kendall distributions and level sets in bivariate exchangeable survival models , 2009, Inf. Sci..

[68]  Fabrizio Durante Solution of an open problem for associative copulas , 2005, Fuzzy Sets Syst..

[69]  Fabrizio Durante,et al.  A weakening of Schur-concavity for copulas , 2007, Fuzzy Sets Syst..

[70]  José Juan Quesada-Molina,et al.  Distribution functions of copulas: a class of bivariate probability integral transforms , 2001 .

[71]  José Juan Quesada-Molina,et al.  Kendall distribution functions , 2003 .

[72]  Radko Mesiar,et al.  Uniform approximation of associative copulas by strict and non-strict copulas , 2001 .