Understanding hotspots: a topological visual analytics approach

Analysis of spatio-temporal event data is of central importance in many domains of science and policy making. Current visualization methods rely on animation, small multiples, and space-time cubes to enable spatio-temporal data exploration. These methods require the user to remember state spaces or deal with layout occlusions when exploring their data. To overcome such issues, we propose a novel visualization technique for such data that applies the topological notion of Reeb graphs to identify hotspots as areas of relatively high event density within kernel density estimates. We illustrate that the topological identification of hotspots proposed in this paper is able to elucidate lifetime, properties, and relationships of hotspots by visualizing their temporal evolution based on the spatio-temporal Reeb graph. To validate our approach, we demonstrate our method on an epidemiological and a crime dataset. The resulting visualizations assist users in quickly identifying and comprehending important dates, events, hotspot properties, and relationships between hotspots.

[1]  Vijay Natarajan,et al.  An Exploration Framework to Identify and Track Movement of Cloud Systems , 2013, IEEE Transactions on Visualization and Computer Graphics.

[2]  David S. Ebert,et al.  Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  Tomoki Nakaya,et al.  Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.

[4]  Marcus S. Day,et al.  Feature Tracking Using Reeb Graphs , 2011, Topological Methods in Data Analysis and Visualization.

[5]  Gerik Scheuermann,et al.  Visualization of High-Dimensional Point Clouds Using Their Density Distribution's Topology , 2011, IEEE Transactions on Visualization and Computer Graphics.

[6]  Donna Peuquet,et al.  Geobrowsing: Creative Thinking and Knowledge Discovery Using Geographic Visualization , 2002, Inf. Vis..

[7]  Neil Ward,et al.  Coping with Crisis in Cumbria: The Consequences of Foot and Mouth , 2002 .

[8]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[9]  Jarke J. van Wijk,et al.  Interactive Density Maps for Moving Objects , 2012, IEEE Computer Graphics and Applications.

[10]  Christian Tominski,et al.  Visualization of Trajectory Attributes in Space–Time Cube and Trajectory Wall , 2014 .

[11]  Gennady L. Andrienko,et al.  Exploratory spatio-temporal visualization: an analytical review , 2003, J. Vis. Lang. Comput..

[12]  Jack Snoeyink,et al.  Isocontour based Visualization of Time-varying Scalar Fields , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[13]  Anthony C. Robinson,et al.  The geoviz toolkit: using component-oriented coordination methods for geographic visualization and analysis , 2011, Int. J. Geogr. Inf. Sci..

[14]  Valerio Pascucci,et al.  Interactive exploration of large-scale time-varying data using dynamic tracking graphs , 2012, IEEE Symposium on Large Data Analysis and Visualization (LDAV).

[15]  Gennady L. Andrienko,et al.  Interactive analysis of event data using space-time cube , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[16]  Peter J. Diggle,et al.  stpp: An R Package for Plotting, Simulating and Analyzing Spatio-Temporal Point Patterns , 2013 .

[17]  磯貝 明,et al.  研究所紹介 米国農務省林産研究所,Atalla博士のグル-プ--Forest Products Laboratory(FPL),Forest Service(FS),United States Department of Agriculture(USDA) , 1997 .

[18]  Deborah Silver,et al.  Visualizing features and tracking their evolution , 1994, Computer.

[19]  Liqiu Meng,et al.  Spatio Temporal Density Mapping of a Dynamic Phenomenon , 2014 .

[20]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[21]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[22]  Torsten Hägerstrand,et al.  What about people in Regional Science? , 1970 .

[23]  Gary Higgs,et al.  Visualising space and time in crime patterns: A comparison of methods , 2007, Comput. Environ. Urban Syst..

[24]  Yi Zhao,et al.  Storygraph: extracting patterns from spatio-temporal data , 2013, IDEA@KDD.

[25]  Robert Harper,et al.  Stories in GeoTime , 2007, 2007 IEEE Symposium on Visual Analytics Science and Technology.

[26]  Valerio Pascucci,et al.  Time-varying reeb graphs for continuous space-time data , 2004, SCG '04.

[27]  Ryan Hafen,et al.  A Visual Analytics Approach to Understanding Spatiotemporal Hotspots , 2010, IEEE Transactions on Visualization and Computer Graphics.

[28]  Kirk Goldsberry,et al.  Issues of Change Detection in Animated Choropleth Maps , 2009, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[29]  Cláudio T. Silva,et al.  Using Topological Analysis to Support Event-Guided Exploration in Urban Data , 2014, IEEE Transactions on Visualization and Computer Graphics.

[30]  Edzer Pebesma,et al.  plotKML: Scientific Visualization of Spatio-Temporal Data , 2015 .

[31]  Han-Wei Shen,et al.  Volume tracking using higher dimensional isosurfacing , 2003, IEEE Visualization, 2003. VIS 2003..

[32]  Mark Harrower,et al.  The Cognitive Limits of Animated Maps , 2007, Cartogr. Int. J. Geogr. Inf. Geovisualization.